Gap Junctions Induced Bistability Conductance in Cardiac Tissue

Jean Bragard & Claudia E. Hawks

Department of Physics & Applied Mathematics, School of Sciences, University of Navarra. 31008 Pamplona. SPAIN.

Why are we interested in studying cardiac dynamics ?

Denti		Number	Percent of total	2005 crude death
Rank.	Cause of death (based on ICD-10, 1992)	Number	deaths	rate
	All causes	2,448,017	100.0	825.9
1	Diseases of heart	652,091	26.6	220.0
2	Malignant neoplasms	559,312	22.8	188.7
3	Cerebrovascular diseases	143,579	5.9	48.4
4	Chronic lower respiratory diseases	130,933	5.3	44.2
5	Accidents (unintentional injuries)	117,809	4.8	39.7
6	Diabetes mellitus	75,119	3.1	25.3
7	Alzheimer's disease	71,599	2.9	24.2
8	Influenza and pneumonia	63,001	2.6	21.3
9	Nephritis, nephrotic syndrome and nephrosis (N00–N07,N17–N19,N25–N27)	43,901	1.8	14.8
10	Septicemia	34,136	1.4	11.5
11	Intentional self-harm (suicide)	32,637	1.3	11.0
12	Chronic liver disease and cirrhosis	27,530	1.1	9.3
13	Essential (primary) hypertension and hypertensive renal disease (I10,I12)	24,902	1.0	8.4
14	Parkinson's disease	19,544	0.8	6.6
15	Assault (homicide)	18,124	0.7	6.1
	All other causes (residual)	433,800	17.7	146.4

Cardiac diseases are among the leading causes of death and we should understand better all the mechanisms associated with them.

Normal electric activity may be disrupted by failures in the propagation of the action potentials

(Keener y Panfilov (1995))

The structure of the cardiac muscle is complex and influences its electrical behavior and dynamics

Wheat Germ Agglutinin (WGA)
DAPI
GJ (Connexin43)

The cardiac muscle is formed with cardiomyocytes, gap junctions (GJ), collagen fibres, fibroblasts, blood vessels,...

Sources : Wikipedia; Sachse's lab.

Gap junctions (GJ) are essential for the propagation of the electrical impulse AP from one myocyte to the next.

GJs form low resistance passages between cardiomyocytes.

Source : Wikipedia

Different types of gap junctions (GJ) have been identified in the cardiac muscle

In cardiac tissue of mammalian, connexins type Cx40, Cx43 and Cx45 are the most common. The permeability of the GJ depends on its structure.

Source : AP Moreno, Cardiovasc. Res. 62, 2004

Different types of gap junctions (GJ) have been identified in the cardiac muscle (II)

The connexin's expression pattern varies in different location of the heart

Source : T. Desplantez et al., BMC Cell Biol. 18, 2017

Dual voltage-clamp method and whole-cell recording allow to measure the electrical properties of the GJ

a) Fix the membrane potential of both cells $\Delta \phi = V_2 - V_1$ transjunctional voltage

b) Measure the current between cells

$$I_{inst.}$$
 I_{ss}

c) Calculate the normalized conductances

$$g_{inst.} = I_{inst.} / \Delta \phi ~ \sim 100 \, pS$$

$$g_{ss} = I_{ss} / \Delta \phi$$

The conductance between the two cells is a dynamical variable

Source : T. Desplantez et al., Eur. J. Physiol. 448, 2004

Mathematical model of a strand of cardiac tissue

The time constant au_g is highly dependent of the connexin's transjunctional voltage Source : T. Desplantez et al., Eur. J. Physiol. **448**, 2004

Mathematical model of a strand of cardiac tissue (ii)

g (i-1) g (i) g (i+1)

2) Myocyte's transmembrane dynamics

$$\frac{\partial V}{\partial t} + \frac{I_{myo} + I_{ext}}{\mathcal{C}} = \nabla \cdot (D\nabla V)$$

 $rac{\partial \mathbf{s}}{\partial t} = f(V, \mathbf{s})$ 5 variables model (BCN)

Monodomain approximation

$$D(x,t) = \overline{D} g(x,t)$$
$$\overline{D} = 1.5 \,\mathrm{cm}^2/\mathrm{s}$$

- The gap junctions are the primary sites of membrane potential changes
- The entire myocyte cytoplasm becomes effectively iso-potential.

Sources : Y. Rudy, Circ. Res. 1997; Cantalapiedra et al. PRE 82 2010.

Numerical method

$$V_{i}^{(n+1)} = V_{i}^{(n)} + \bar{D}\frac{\delta t}{\delta x^{2}} \left\{ g_{i}^{(n)} \left[V_{i+1}^{(n)} - V_{i}^{(n)} \right] - g_{i-1}^{(n)} \left[V_{i}^{(n)} - V_{i-1}^{(n)} \right] \right\} - \delta t \, \frac{I_{myo}^{(n)} + I_{ext}^{(n)}}{\mathcal{C}}$$

 $\delta t = 10 \mu {
m s}$ Integration time step

$$g_i^{(n+1)} = g_i^{(n)} + \delta t \, \frac{g_{ss}(\Delta \phi_i^{(n)}) - g_i^{(n)}}{\tau_g(\Delta \phi_i^{(n)})}$$

Super-index (n) refers to time step n. Subscript i refers to position i in the chain.

Source : Keener 1991

Stimulation protocol (L=400 cells)

- 1. Same initial values are set to all the GJ conductances ($g_i = g_{ini}$)
- 2. We excite the first 7 cells (i=1..7) to elicit an AP that propagates through the fiber
- 3. We repeat the stimulation with a period of T = 480 ms
- 4. We measure the time evolution of the GJ conductances after each stimulation

Results for the normal case (healthy)

Here we set $g_{ini} = 0.4$

The conductances of all the GJ are returning to the max value $g\sim 1$ Nothing fancy happens !

Source : Hawks et al. IJBC 2019

Modification of the GJ dynamics (diseased case)

In order to model a diseased tissue we modify the characteristics of the GJ

- We reduce the overall conductance to 40% of the normal values (ischemia)
- We introduce the 'shrinking factor' FS that alters the width of the plateau

Results of the GJ bistability induced by varying FS

We observe a transition by increasing FS from GJ conductance close to 0.4 (upper state) to GJ conductance close to 0.1 (lower state). For intermediate values of FS, we observe a spatially mixed state.

Source : Hawks et al. IJBC 2019

Study of the transition from UP to LOW GJ conductances

We have studied the influence of both FS and g_{ini}

for characterizing the transition between upper and lower states of conductance The spatial average of the conductance < g >is used as an order parameter to characterize this transition Hysteresis is observed when varying the initial values of the conductance

Influence of g_{ini} and added noise on the transition

Related experimental study showing bistability for GJ

Junctional delay, frequency, and direction-dependent uncoupling of human heterotypic Cx45/Cx43 gap junction channels

Willy G. Ye^{a,1}, Benny Yue^{a,1}, Hiroshi Aoyama^b, Nicholas K. Kim^a, John A. Cameron^a, Honghong Chen^a, Donglin Bai^{a,*}

By varying the junctional delay Δt and the pacing frequency, they observe a different dynamics for the GJ conductances. It also highly depends on the GJ composition

Source : W.G. Ye et al., JMCC. **111**, 2017

Conclusions

- We have studied the conductance dynamics of the GJ in a 1D model
- In some simulated diseased situations we observe bistability in the values of the GJ conductances.
- The high to low level of conductance is mediated by parameter FS
- In the intermediate mixed state we observe a highly alternating spatial distribution of the GJ conductances
- Future Plan: Connect our findings to electrophysiology experiments

Acknowledgements

Collaborators:

UNAV-CIMA-CUN (Dr. Javier Diez, MD, Dr. I. Garcia-Bolao, MD, ...) UPC Barcelona (B. Echebarria, A. Peñaranda,

I.R. Cantalapiedra, E. Alvarez-Lacalle) Liege University (P.C. Dauby, A. Collet, ...)

Utah CVRTI (F.B. Sachse, A.C. Sankarankutty, ...)

Max Planck Göttingen (A. Witt, S. Luther,...)

Financial support : (MINECO) under grant number SAF2014-58286-C2-2-R (Spain research grant) Fulbright fellowship (CVRTI, Utah)

Thank you !

Justification of the FS factor

Heterotypic GJs have asymmetrical g_{ss} functions.

A blend of several type of GJ types may justify the FS parameter

Source : Hawks et al. IJBC 2019

Justification of the introduction of noise (Ns)

Spatial heterogeneities and different geometric orientation lead to variability in the GJ conductance This may justify the noise factor

Source : DP Lackey et al. Ann. BE 2011