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ABSTRACT

In this paper, we study the propagation of the cardiac action potential in a one-dimensional fiber, where cells are electrically coupled through
gap junctions (GJs). We consider gap junctional gate dynamics that depend on the intercellular potential. We find that different GJs in the
tissue can end up in two different states: a low conducting state and a high conducting state. We first present evidence of the dynamical
multistability that occurs by setting specific parameters of the GJ dynamics. Subsequently, we explain how the multistability is a direct con-
sequence of the GJ stability problem by reducing the dynamical system’s dimensions. The conductance dispersion usually occurs on a large
time scale, i.e., thousands of heartbeats. The full cardiac model simulations are computationally demanding, and we derive a simplified model
that allows for a reduction in the computational cost of four orders of magnitude. This simplified model reproduces nearly quantitatively the
results provided by the original full model. We explain the discrepancies between the two models due to the simplified model’s lack of spatial
correlations. This simplified model provides a valuable tool to explore cardiac dynamics over very long time scales. That is highly relevant
in studying diseases that develop on a large time scale compared to the basic heartbeat. As in the brain, plasticity and tissue remodeling are
crucial parameters in determining the action potential wave propagation’s stability.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0053651

Gap junctions (GJs) form connections among cells that allow the
transport of ions and electrical impulses. They form a relatively
nonselective pore through which electrical current and chemi-
cal species can diffuse. They are composed of proteins known as
connexins that exhibit gating. GJs are vital players in control-
ling the action potential propagation between cardiac myocytes,
and altered GJ regulation has been observed in various cardiac
dysfunctions. GJ conductance depends on the intercellular volt-
age difference, and conductance is reduced as the voltage dif-
ference increases. This paper shows how multistability due to
the interplay between gap junction (GJ) dynamics and voltage
dependence may lead to an instability that results in spatially dis-
ordered states of the conductance. Interestingly, this conductance
heterogeneity does not stem from tissue properties (as in a

fibrotic tissue, for instance), but it is dynamically generated in
an otherwise utterly homogeneous tissue. Given that the car-
diac tissue’s heterogeneities are known to be a trigger for car-
diac arrhythmias, these inhomogeneities could provide a novel
mechanism for arrhythmia generation.

I. INTRODUCTION

The description of the electrical activity in the cardiac tissue
is complex, and its study represents a very active field of research
in applied mathematics and bioengineering.1–3 The models used
to study cardiac dynamics have become more detailed over time,
obtaining a better comparison with experimental results, at the
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expense of a higher computational cost. Besides direct numerical
simulations of the models, insight has been obtained through two
different, but complementary, venues: one is the use of simplified
models that allow faster simulations and a deeper mathematical
analysis4,5 and the other is the use of standard techniques in applied
mathematics, such as stability analysis or bifurcation theory, to study
the properties of the different cardiac models.

Stability analysis has been successfully applied to solve many
problems in disparate areas of biology, such as gene regulatory
networks in cells,6 coupled neurons,7 the study of alternans,8 or
early afterdepolarizations (EADs)9 in a cardiac tissue. In particu-
lar, the phenomenon of multistability has been associated with the
production of complex patterns, both spatially and temporally.10

In this paper, we will use the aforementioned techniques to
study the propagation of the cardiac waves in a system with voltage
and time dependent gap junctions (GJs). GJs often appear as clus-
ters of up to many thousands of connexons11 (hemi-channels formed
by six connexins). In mammals, most common types of proteins
conforming the connexons in cardiac cells are the Cx43 (in atria)
and Cx45 (in ventricles). The GJ dynamics has been experimentally
characterized by Vogel and Weingart12 and Desplantez et al.,13,14 its
dependence on temperature,15 and its voltage regulation16 has also
been recently described. Altered GJ regulation has been associated
with various cardiac dysfunctions. For instance, an experimental
study by Beardslee et al.17 has put forward the relation between
ischemic hearts and the remodeling of the cardiac electrical con-
ductance through the dephosphorylation of ventricular Cx43. Jalife
et al.18 have shown in mouse hearts the crucial influence of the GJ
dynamics with the propensity to trigger arrhythmias. The influence
of the GJ through the slowing down of the action potential has also
been put forward in a paper by Gutstein et al.19 Dynamic uncou-
pling is also a well-known phenomenon in neurons,20 where it has
been shown that GJ gating could lead to unidirectional conduction
blocks and wave breaks.21 In another context, cancer cells usually
have downregulated levels of gap junctions. Several lines of evidence
suggest that loss of gap junctional intercellular communication is an
important step in carcinogenesis.22

In the heart, abrupt changes in conductance produce a
sink–source mismatch that may result in the dispersion of velocity,
often giving rise to a conduction block and re-entry.23 The spatial
changes in conductance are due to remodeling of the cardiac tissue
caused by, e.g., fibrosis. Therefore, it is due to a pre-existing hetero-
geneity of the medium. In a recent publication,24 we observed that
the dispersion in velocity might appear in an utterly homogeneous
tissue due to the voltage and time dependence of the intercellular
conductance. In the present paper, we will further extend the anal-
ysis of the spatially dependent conductances and provide a stability
analysis of the mathematical model.

The purpose of this paper is threefold: first, we review briefly
the main result in Ref. 24 and show how the inclusion of the GJ
dynamics in the model for the action potential (AP) propagation
may lead under some circumstances to spatially nonuniform elec-
trical conductances; second, we explain why this multistability does
occur and study it in a reduced system (considering successively
only one, two, and three coupled GJs); third, we propose a simpli-
fied spatially extended model that captures the characteristics of the
full model but with a computational speed gain of over four orders

of magnitude. The results of the latter model compare satisfactorily
with the full model. The organization of the paper is as follows. In
Sec. II, we provide the full model description for the AP propagation
in a cable with GJ dynamics. The simulations of the full model are
presented and analyzed in Sec. III. In Sec. IV, we detail the stability
analysis of the GJ dynamics and uncover the reason for the multista-
bility observed in Sec. III. In Sec. V, we propose a simplified model,
and we compare the results given by the full and simplified mod-
els. We found that there is good agreement between them. Finally,
discussions of the limitations of this study and future perspectives
are given in Sec. VI. In the Appendix, we provide an explicit cal-
culation of the space constant, an essential parameter for the AP
propagation’s characterization.

II. CABLE EQUATION WITH GAP JUNCTION DYNAMICS

Let us present the equations that are used to study the long-
term effects of the variation of the tissue conductance induced by the
GJ dynamics. It was shown in a previous study25 that it is sufficient
to couple the gap junction (GJ) dynamics using a monodomain for-
mulation of the cable equation. The same model was used in a recent
publication24 by the authors, where they showed numerical evidence
of the multistability phenomenon. For completeness, in this section,
we present the model used in Ref. 24. Then, in Secs. IV and V, we
develop the theory to explain the observed multistability and give
a simplified version of the cable equation model that allows study-
ing the long-term effects of gap junctional dynamics much more
efficiently.

A. Monodomain equations

The model is based on the monodomain formulation of the
cable equation,26,27

∂s

∂t
= f(V, s), (1)

∂V

∂t
+

Im + Iext

C
= ∇ · (Di∇V), (2)

where s is the dynamical state vector that collects all the variables
involved in the local description of the ionic currents that cross the
myocyte membrane. V denotes the transmembrane potential (stan-
dard units are in mV), Im is the sum of the ion currents (units
are in µA/cm2), and C is the cell membrane capacitance per unit
area (≈1µF/cm2). The term Iext allows for the introduction of an
external current as it happens during an external excitation of the
cardiac tissue. Here, because we use a monodomain formulation,
the external excitation is applied in the intracellular domain. The
electrotonic current between adjacent myocardial cells is modeled
through the Laplacian term in Eq. (2). Typical values for the con-
ductance when assuming a constant homogeneous tissue lead to a
diffusion parameter of D ≈ 1.5 · 10−3 cm2/ms.28

B. Gap junction dynamics

The inclusion of the GJ dynamics has been studied in a mod-
eling paper by Hand and Griffith.29 The latter study combines a
multi-scale approach with microstructure details and macroscopic
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tissue characteristics. In the same vein, Costa et al.30 developed a
semi-continuous model to describe the electrical propagation in
the cardiac tissue, including the GJ dynamics. Another modeling
perspective consists of viewing the heart as a network of differ-
ent types of cells that are electronically coupled via gap junctional
conductance.31

Due to the introduction of the GJ dynamics into the mon-
odomain model, the diffusion parameter D = D(Ex, t) becomes a
function of space and time. The relation between the conductance
and the GJ dynamical function g is simply written as follows:

D(Ex, t) = D̄ gEx(t), (3)

where D̄ is the fixed nominal value for the inter-cellular diffusion
parameter D̄ = 1.5 · 10−3 cm2/ms.

To simplify the problem, we will work on a one spatial dimen-
sional setting. Therefore, when we discretize space in order to solve
the model equations (1) and (2), the index number i refers to the
cell number i on the cable. The gap junction between cell num-
ber i and cell number i + 1 has also index number i, following our
convention. Here, the dynamics of the gap junctions is modeled fol-
lowing the works of Lin et al.32 and Desplantez et al.13 Thus, the set
of differential equations that govern the GJ dynamics is written as

dgi

dt
=

gi,ss(1φ) − gi

τg(1φ)
, (4)

where 1φ = φ(i + 1) − φ(i) is the difference in the intra-cellular
electrical potential between the two adjacent cells of the gi. The local
steady-state value in Eq. (4) depends on the local instantaneous 1φ

following this equation:

gi,ss =
gi,max − gi,min

1 + exp[A(1φ − V1/2)]
+ gi,min, (5)

and the time scale in Eq. (4) is given by τg = Aτ exp[−Bτ |1φ|].
The parameter values entering Eqs. (4) and (5) are taken from the
works of Lin and Desplantez.13,32 In this work, we will consider
GJs of type (Cx43_43), which are nearly symmetrical with respect
with the sign of 1φ (see Fig. 1). The corresponding parameters are
gathered in Table I. We also have the following parameter values:
A = z/26.714 (mV)−1, Aτ = 109, 900 (ms), Bτ = 1/11.8 (mV)−1,
and gi,max(1φ = 0) = 1. The dependence of gi,ss as a function of 1φ

is displayed in Fig. 1.
We emphasize that because we are using a monodomain

formulation, the computation of the term 1φ = φ(i + 1) − φ(i)
reduces to 1V = V(i + 1) − V(i) as a result of assuming that the
extra-cellular electrical potential is constant throughout the domain.
Another assumption comes from the fact that each cell is electrically
isopotential, which is also a simplification.26

TABLE I. Values for the gap junction dynamics from Refs. 13 and 32. Here, the

parameter values are for (1φ < 0/1φ ≥ 0).

Connexin type V1/2 (mV) gi,min z

Cx43_43 −60.8/62.9 0.26/0.25 −3.4/2.9
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FIG. 1. Steady-state values of the normalized gap junction gi,ss as a function of
the inter-cellular potential difference 1φ. The horizontal line (green) represents
the case where the conductance is assumed constant.

C. Variations in the dependence of the conductivity

on the intercellular potential

Recently, several effects that affect the dependence of gi,ss on
1φ have been reported.15,16 After an increase in temperature, for
instance, it has been observed that the value of A in Eq. (5) increases,
V1/2 decreases, and gating kinetics accelerate (cf. τg decreases).15 A
variation in the dependence of the conductance with the intercel-
lular potential has also been observed in connexin 45 variants, in
which two amino-terminal ends have been altered.16

To study the alteration of the GJ conductance characteristics,
we have modified the dependence of gi,ss on the intercellular poten-
tial 1φ in Eq. (5). We rescale 1φ as 1φ′ = α1φ. This is equiv-
alent to modifying the parameters of Eq. (5) as follows: A′ = αA,
V′

1/2 = V1/2/α. The larger α is, the narrower and steeper is the
curve in Fig. 1. For this reason, we have denoted α as the factor of
shrinking, FS.

Detailed models of gap junction dynamics usually consider sev-
eral open and closed configurations of the connexins that compose
the gap junctions.21,33,34 However, the physical meaning of the factor
of shrinking, FS, can be better understood assuming a simple two-
state system of high and low conductance. Then, we can consider an
effective free energy difference between these two states that depends
on the intercellular potential as follows:

1G = 1G0 + a1φ. (6)

The conductance will follow a classical Boltzmann sigmoidal
equation as written in Eq. (5), with

gi,ss =
gi,max − gi,min

1 + exp[−(1G0 + a1φ)/RT]
+ gi,min. (7)

Identifying term by term between Eqs. (5) and (7), we have that
A = −a/(RT), V1/2 = 1G0/a. Thus, a change in the shrinking fac-
tor corresponds to a change in the factor a, i.e., a modification of
the voltage dependence of the effective free energy of this two-state
system.
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D. Transmembrane model and numerical methods

For the dynamics of the transmembrane potential, we will use
the generic five-variable model by the model of Cantalapiedra et
al.,5,35 with the model parameters fitted to describe human ven-
tricular myocytes.36 A one-dimensional cable of cardiac tissues was
simulated using Eqs. (1)–(5). Time and space were discretized using
1x = 0.01 cm and 1t = 0.01 ms. We use a simple Euler explicit
scheme to solve the set of Eqs. (1)–(5). In particular, Eq. (2) is
discretized as follows:

V(n+1)(i) = V(n)(i) + D̄
1t

1x2

{

g(n)
i

[

V(n)(i + 1) − V(n)(i)
]

−g(n)
i−1

[

V(n)(i) − V(n)(i − 1)
]

}

− 1t
I(n)
m + I(n)

ext

C
, (8)

where the superscript (n) refers to variables taken at time step n and
index i indicates the spatial localization on the cable. Here, we con-
sider that the size of the myocytes is constant and corresponds to
one grid spacing 1x = 100 µm. Therefore, one GJ is always located
between two spatial grid points. The number of cardiac myocytes in
the one-dimensional strand of cardiac tissues that we studied was
set to N = 300 and sometimes N = 1000. We have checked that 1t
that we have chosen is sufficiently small to ensure that the numerical
results are robust, and the numerical error is bounded and less than
0.5%.

The dynamics of the GJs are studied following the stimulation
protocol described next. The strand of tissues is periodically excited
at one end of the cable by injecting enough current to elicit an action
potential. In particular, the first seven cells of the system are stim-
ulated for 1 ms with an excitation current of Iext = 0.52 µA/cm2.
Following this excitation, an action potential (AP) is elicited. Subse-
quently, the AP propagates toward the opposite end of the cardiac
strand of tissues. We repeat the stimulation periodically. For all
the simulations considered, we have fixed the stimulation period to
T = 480 ms. Thus, we have chosen a rather short pacing period
to speed up simulations. Most of the simulations presented in this
paper require many excitations to display non-trivial behaviors.
In some instances, we have performed simulations that required
as much as 10 000 excitations to reach a steady state for the GJ
dynamics. We have further checked that the numerical scheme does
not influence the presented results using the Crank–Nicholson37

discretization scheme for some simulations.

III. RESULTS OF THE FULL MODEL

This section presents the results of numerical simulations per-
formed with the model developed in Sec. II. We first discuss the
question of the parameter selection. In a healthy tissue, the param-
eters associated with the action potential model and the connexins
are such that the conductance is nearly constant in space and time,
as it has been shown in the simulations presented in Ref. 38.

Alternatively, under several pathologies, it has been observed
that the average conductance can be dramatically reduced39,40 and
also that the time scale associated with the GJ gating may be altered,41

for instance, due to drug intake,42 autoimmune and inflammatory
cardiac channelopathies,43 or an increase in fibrosis content.44 This
paper aims to simulate a diseased tissue and look at long-term effects
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FIG. 2. Steady-state values of the gap junction gi,ss of type (Cx43_43) as a
function of 1φ for different values of the parameter FS (“Shrinking factor”).

on the conductance distribution. In particular, we show that non-
trivial spatial distributions eventually appear upon stimulating the
tissue when modifying the model’s parameters. We have performed
simulations with initial values of the conductance set to a maximum
of 40% of their nominal values; i.e., gi,max(1φ = 0) = 0.4. We also
have reduced the GJ gating time scale by modifying this parameter
to the new value Bτ = 1/5 (mV)−1. A further modification intro-
duces a parameter associated with the steady-state characteristics of
the GJ conductance (gi,ss). We called this last parameter the factor of
shrinking FS. It is directly related to the plateau’s width character-
izing the GJ dynamics, as shown in Fig. 2. Evidence of varying GJ
characteristics can be found in Refs. 15, 16, and 45.

A. Multistability induced by the shrinking factor FS

To study the effect of the modifications in the GJ dynam-
ics, we have performed simulations in a one-dimensional strand
of tissue, stimulating it from one side at a stimulation period of
T = 480 ms during 1000 stimulations. As initial conditions, we con-
sider a uniform value of g = 0.4. Figure 3(a) displays the spatiotem-
poral dynamics of the GJ when setting the value of the shrinking
factor to FS = 2. We represent the field gi(t) through a color code
[see the colorbar of Fig. 3(a)]. For this value of FS after approxi-
mately 300 beats, the conductances show a pattern of alternations
that is not regular but rather spatially disordered. Note that all the
simulations are performed with a maximum conductance reduced to
40% of its nominal value. In Fig. 3(b), we have represented the final
values of gi (after 1000 beats) for three values of FS; i.e., FS = 1 (black
line), FS = 2 (red line), and FS = 4 (green line). For FS = 1, the final
stage is close to the initial value and a uniform constant g = 0.4.
For FS = 4, we observe again a uniform field but with a value close
to g ≈ 0.1. For intermediate values, FS = 2, we observe the spatial
alternation of the conductance field. We observe that the spatial cor-
relation length of the disordered pattern [see Fig. 3(a)] is only a few
cell’s length.
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FIG. 3. (a) Space–time plot showing the evolution of the conductances gi(t) (indi-
cated as a color scale) for the symmetrical GJ Cx43_43. Values are taken at
regular time intervals (one beat number corresponds to T = 480ms). (b) The
final state of gi depends crucially on the value of the parameter FS; here, we
show three values: FS = 1 (black line), FS = 2 (red), and FS = 4 (green).

These results suggest the existence of a transition induced by
the increase (or decrease) of the parameter FS. This transition occurs
between the upper (g ≈ 0.4) and the lower (g ≈ 0.1) uniform con-
ductances. In between these two limiting cases, we observed a spa-
tially chaotic distribution of the conductance where the two states
are mixed. This transition has been studied in a previous publica-
tion by the authors.24 In the latter paper, it was shown that the two
states competing are, in fact, two limit cycles with a period equals to
the forcing period T = 480 ms. It was also shown that the transition
between the two states was sensitive to the initial condition (hys-
teresis phenomenon) and that the initial noise was also crucial in
characterizing this transition. In Sec. IV, we show that the observed
phenomenon is a result of the relative stability of the solutions of the
GJ dynamics.

Several order parameters can be used to characterize the
observed transition in Fig. 3. One possible choice is the spatial aver-
age value for the conductance 〈g〉, and another possibility is the
proportion of GJs that converge to the upper state, as denoted by
PUP in Fig. 4. We characterize the transition as a function of FS and
the noise (Ns) that is added to the mean initial value of the conduc-
tance gini. We have set g(0)

i , with i the spatial index associated with
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FIG. 4. Proportion of GJs (PUP) that converge to the upper state as a func-
tion of the shrinking factor FS. For comparison purposes, we show the results
of both the full model (see Sec. II) and the simplified model (see Sec. V).
The green dotted line corresponds to the median values of the full model with
Ns = 10−2. The red dashed line corresponds to the median values of the full
model with Ns = 10−4. The black solid line corresponds to the median values of
the full model with Ns = 10−6. The medians for the simplified model are repre-
sented by the symbols of the corresponding colors. Here, gini = 0.4. The medians
were calculated over 20 random realizations.

the GJ, as follows:

g(0)
i = gini + Nsσu, (9)

where σu is a uniformly distributed random variable in the inter-
val [−1; 1] and Ns is the parameter characterizing the noise strength
in the initial condition. Here, we have used three values for the
noise strength Ns = [10−6, 10−4, 10−2] corresponding to very low,
medium, and high initial perturbations. Note that the results for the
lowest value of Ns could be obtained equally without adding any ini-
tial noise. Indeed, the numerical method and the grid discretization
are such that some very small “numerical” noise is always present in
the simulations, as explained in more detail in the Appendix.

In Fig. 4, gini is set to 0.4. For comparison purposes, we have
grouped the results of the full model and the simplified model in
Fig. 4, even if the simplified model will be explained in detail in
Sec. V. Due to the randomness in the initial conditions, we always
perform 20 realizations of the initial noise and display the median
value over 20 realizations. The striking result from Fig. 4 is that
the transition from the upper state to the lower state spans several
orders of magnitude of the bifurcation parameter FS when the ini-
tial added noise is large enough. We observed a stepped transition,
where the intermediate step has an extension of up to four orders
of magnitude, as seen in Fig. 4, when Ns = 10−2. To our knowledge,
this is very uncommon in bifurcation theory, and we will provide an
explanation of this phenomenon in Sec. IV.

Before turning to the stability problem, let us analyze in more
detail the disordered state that is shown in Fig. 3(b). In particu-
lar, we have computed the relation between the conductance and
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the action potential (AP) conduction velocity when we have a non-
homogeneous state as it happens for intermediate values of the
bifurcation parameter FS.

Figure 5 shows the converged states of two simulations where
we observe a dispersed state in the conductance. In Fig. 5(a) where
FS = 1.61, one computes a measured PUP = 0.7275. We observe
alternations of high and low values of the conductance field g with
a dominance of UP states. On the contrary, in Fig. 5(b), where
we have set FS = 2.19, the lower conductance case is dominant and
PUP = 0.18. Here, we are directly interested in the consequence of
this dispersed state onto the AP velocity. Let us recall that according
to our notation, the gap junction gi−1 lies between cell i − 1 and cell
i. The velocity ci corresponds to the cell spacing dx divided by the
AP front’s travel time between cell i − 1 and cell i. The correlations
between the two fields gi−1 and ci are obvious from both Figs. 5(a)
and 5(b). We have computed the Pearson correlation coefficient
between the conductance and velocity fields, and we get a value of
ρ = 0.906 (a) and ρ = 0.996 (b). Also, apparent from Figs. 5(a) and
5(b) is that when the local conductance is low, then the local veloc-
ity is low and vice versa. However, the relation between the local
conductance and the local AP velocity is not strictly local. Indeed, in
Fig. 5(a), we observe that the AP velocity corresponding to a cell with
high conductance located just before a cell with low conductance
has a markedly excess value of speed compared to the others. In the
same fashion, in Fig. 5(b), we observe that the AP velocity of a cell
with low conductance located before a cell of high conductance has
a markedly lower value than its counterparts. These last two obser-
vations can be explained physiologically by considering the effect of
the electrotonic currents on the AP propagation and the source–sink
mismatch. The asymmetry of the electrotonic current for a cell at the
edge between low and high conductance explains the phenomenon.
It is important to remember that the waves are propagating from
left to right in Fig. 5. Figure 5 highlights the non-locality relation
between the AP velocity and the tissue conductance. We will return
to this non-locality relation in Sec. IV B.

The effect of dispersion in the AP velocity has important physi-
ological consequences. It is well known that spatial dispersion of the
AP velocity favors re-entries and arrhythmias. With our system, we
proceed to a systematic study of the effect of the dispersion on the
AP velocity.

Figure 6 condenses our quantitative findings for the relation
between the AP velocity and the conductance. In the homogeneous
case, we fix the values of the conductance uniformly in the system.
On the horizontal scale of Fig. 6, a value of g = 1 would corre-
spond to a tissue diffusion of D̄ = 1.5 · 10−3 cm2/ms. We measure
the steady-state AP velocity between grid points 500 and 900 (cor-
responding to a traveled front distance of 4 cm). We lower the
conductance until the conductance is so low (g ≈ 0.049) that the
AP can no longer propagate through the system. Note that the sys-
tem size was set to N = 1000 cells to get accurate measurements. The
velocity measured in the homogeneous case follows a perfect fitting
curve (green line in Fig. 6) given by

c = 0.082 97g0.4478 − 0.009 398. (10)

The relationship between nerves and cardiac impulses with tis-
sue conductance has been well-studied.26,46 In particular, in Eq. (10),

FIG. 5. Comparisons between the local value of the conductance gi−1 and the
AP velocity ci . The horizontal axis indicates the spatial location of cell i. We rep-
resent the values of the local conductance gi−1 (blue curve) with the left vertical
axis and the local velocity ci (units m/s) (red curve) with the right vertical axis, both
as a function of space. Note that ci is computed by dividing the cell spacing dx by
the AP front’s travel time between cell i − 1 and cell i. Recall that the gap junc-
tion between cell i − 1 and cell i is denoted by gi−1 according to our notation.
Parameters are N = 1,000 cells, gini = 0.4—(a) FS = 1.61, PUP = 0.7275 and
(b) FS = 2.19, PUP = 0.18.

one should expect that the scaling exponent between the AP veloc-
ity and the conductance would be 1/2. The departure from the 1/2
exponent can be explained by the fact that we have focused on the
very low-speed spectrum of the relationship between the AP velocity
and the conductance. For this range, the cardiac tissue’s discreteness
from a physiological and numerical point of view matters most.

Let us now turn to the non-homogeneous case. We have seen
in Fig. 5 that the local relation between c and g has a strong disper-
sion. In Fig. 6, we report the velocity computed in the same manner
as in the homogeneous case by measuring the AP front’s travel
time between grid points 500 and 900 (〈c〉) after the steady state
is reached. Note that 〈c〉 is the harmonic mean of the local veloc-
ities between grid points 500 and 900. On the horizontal axis, we
compute the average (arithmetic mean) of the conductance between
the same points (〈g〉). To get an extensive range for the dispersion
parameter (pUP, indicated in the color scale of Fig. 6), we vary the
bifurcation parameter FS, accordingly.
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FIG. 6. AP velocity as a function of conductance. The green curve c = agb +
c0 represents the best fit for the case of homogeneous conductances. Fitting
parameters are a = 0.082 97, b = 0.4478, c0 = −0.009 398, and R2 = 1. For
the non-homogeneous cases, the colored circles and diamonds correspond to

D̄ = 1.5 · 10−3 and D̄ = 0.75 · 10−3 cm2/ms, respectively. The color coding
(side-bar) corresponds to the value of PUP in the non-homogeneous case. See
the text for the definitions of 〈c〉 and 〈g〉 used in the non-homogeneous case.
Also shown are the black and red points corresponding to the local velocities and
conductances measured in Figs. 5(a) and 5(b), respectively. The system size is
set to N = 1000 cells.

The overall diffusion parameter D̄ is also varied, and the
colored circles and diamonds correspond to D̄ = 1.5 · 10−3 and
D̄ = 0.75 · 10−3 cm2/ms, respectively. Figure 6 shows that the non-
homogeneous situation has a dramatic influence on the AP velocity.
We observe an overall decrease in the velocities with respect to
the homogeneous case. The large fluctuations of the local veloc-
ity imply that the velocity computed in the non-homogenous case
cannot be easily related to the homogeneous case as evidenced in
Fig. 5. In Sec. IV B, we propose an empirical nonlocal relationship
between the AP velocity and the conductance values. This relation
will be a necessary ingredient for performing the stability analysis in
Sec. IV B.

To summarize, one finds that the tissue with non-homoge-
neous conductance displays a strong dispersion in the local AP
velocity. This is especially true when the speed (and conductances)
are low. The relationship between the dispersed state and the cor-
responding average velocity has been measured in our system. An
analytical theory (such as, e.g., a mean-field calculation) able to
explain our numerical findings of Fig. 6 is beyond the scope of the
present paper.

IV. REDUCED DESCRIPTIONS

In this section, we aim at explaining, through a series of reduced
descriptions, the origin of the multistability phenomenon that was
observed in Sec. III (see Fig. 4). The main idea behind the simpli-
fied model is to decouple the dynamics of the action potential from
the dynamics of the GJ. We want to demonstrate that the onset of
the instability leading to the multistability is to be found in the GJ
dynamics. We, therefore, computed a typical AP, shown in Fig. 7
and saved it as a data vector with a sample discretization time of
δt = 0.01 ms. In the following developments, whenever we needed
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FIG. 7. Typical action potential, with the V(t) function computed after some time;
therefore, transients have been discarded. Here, the value of the conductance
g = 0.4 is kept constant in space and time throughout the simulation.

the value of the AP in between two sample points, we obtained
it using a straightforward linear interpolation between these two
points.

A. A single GJ dynamics

Let us start with the simplest model that consists of a single GJ
that connects two myocytes (Fig. 8). In this case, we have a non-
autonomous first-order differential equation for the GJ dynamics,

dg

dt
=

gss(1φ) − g

τg(1φ)
, (11)

where 1φ = 1V = V|2 − V|1 = V(t − 1t) − V(t) is the difference
in potential between the two cells. The time delay 1t is the time
it takes for the AP to propagate from Cell 1 to Cell 2. Consider-
ing that the distance between the two cells is fixed at δx = 100 µm,
one readily computes that 1t = δx/c(g), where c(g) is the function
that relates the AP speed with the conductance. This function has
been evaluated once for all from the results of simulations of the full
model with different constant values of the GJ as indicated by the
blue dots and the green fitting curve in Fig. 6. The fitting curve is
given by Eq. (10).

Therefore, in this simple model, we have a single differential
equation, Eq. (11), that is forced by a periodic function that is per-
turbed by the value of the gap junction itself (strong perturbation).
This makes the analytical solution of Eq. (11) quite intractable, and
we rather proceed to solve the equation numerically.

We study the dynamics of the equation by scanning two of
its parameters that are the previously defined shrinking factor FS
and the initial value of the GJ. In Fig. 9, we collect the results of
the converged final state for three different initial conditions [g(0)
= 0.1, 0.25, 0.4] for the value of FS in the range between 1 and 3.
In addition, by launching many simulations for intermediate initial
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FIG. 8. Schematic representation of a GJ connecting two cardiomyocytes. The
AP reaches Cell 2 with a delay with respect to Cell 1 that is dependent on the GJ
value.

conditions, we were able to compute numerically the unstable man-
ifold (indicated as a dashed blue line in Fig. 9) that separates the two
basins of attraction.

Some comments are in order for the analysis of the results pre-
sented in Fig. 9. First, the final states plotted in the figure are not
fixed points but rather periodic limit cycles (LCs) with a period equal
to the period of the forcing (here, T = 480 ms). To represent the
limit cycles, we use the standard Poincaré map section technique
that is very handy to study the stability of periodic cycles. Therefore,
we have represented in the diagram of Fig. 9 only one representative
point of the corresponding limit cycle. Second, Fig. 9 shows two fold
bifurcations at approximate values of FS1 = 1.46 and FS2 = 1.72
that defines a bistable region. In this region, we observe the hystere-
sis phenomenon that is typical of subcritical bifurcations. Indeed, for
intermediate values of the parameter FS, we observe the coexistence
of two stable limit cycles. The chosen dynamics essentially depends
on the initial condition. This bifurcation diagram is reminiscent to
what it is observed with the Duffing oscillators.47 As an example, let
us illustrate in more detail what happens in the bistable region when
FS = 1.67.
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FIG. 9. Final state gend as a function of the shrinking factor FS for three different
initial values g(0) = 0.1, 0.25, 0.4. The blue dashed curve indicates the unstable
manifold.
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FIG. 10. (a) Transient trajectories toward their corresponding stable limit cycle
(LC). The initial condition g(0) = 0.2544 leads to the LC shown in inset (b), while
g(0) = 0.2545 leads to the LC shown in inset (c). Note that the axis scales in (b)
and (c) are approximately an order of magnitude apart. Here, FS = 1.67.

If we set FS = 1.67, i.e., in the bistable region, we observe
in Fig. 10 that the final state of the system depends crucially on
the initial condition. In this case, there is a saddle point around
g ≈ 0.254 45 that separates the trajectories in the phase space. Insets
of Figs. 10(b) and 10(c) show the structure of the two limit cycles.
Note that the limit cycle in the inset of (b) is an order of magni-
tude larger than the other LC. Note also that the time to reach their
respective LC is very large. It is of the order of thousands of beats (or
periods). This means that the dynamics takes place on a very large
time scale compared to one heart beat (T = 480 ms).

As partial conclusions, in this section, we have shown that a
model consisting of a single GJ periodically driven is sufficient to
provide bistability. We have determined the range of the parameter
FS leading to bistability. The dynamics of the GJ takes place on a
very long time scale compared to the basic time scale, i.e., the heart
beat period.

B. Two coupled GJs

Let us now extend the results of Sec. IV A by analyzing a system
of two coupled GJs. The system is still relatively simple (see Fig. 11),
and we can proceed to a detailed analysis of it. We are especially
interested in determining whether the multistability of the two LCs
remains present and to what extent.

The equations for the dynamics of the two GJs are as follows:

dg1

dt
=

gss(1φ1) − g1

τg(1φ1)
, (12)

dg2

dt
=

gss(1φ2) − g2

τg(1φ2)
, (13)
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FIG. 11. Schematic representation of two successive GJs connecting three car-
diomyocytes. The delays1t1 and1t2 (transit times for the AP) can be evaluated
using kinematic relations (see the text for details).

where 1φ1 = 1V1 = V|2 − V|1 = V(t − 1t1) − V(t) and 1φ2

= 1V2 = V|3 − V|2 = V(t − 1t2 − 1t1) − V(t − 1t1). Here, again,
we use the typical temporal variation of AP as shown in Fig. 7. To
proceed to the solution of Eqs. (12) and (13), we need to express the
transit times 1t1 and 1t2 corresponding to the displacement of the
AP front from Cell 1 to Cell 2 and from Cell 2 to Cell 3, respectively.
To do this, we will use kinematic relations as we did in the one GJ
case in Subsection IV A. Here, again, we use the fact that the dis-
tance between the cells is held constant to δx = 100 µm. In the case
of several coupled GJs, we have measured in the full simulations that
there exist spatial correlations between the AP speeds and the local
values of the conductance as shown in Fig. 5. If we want to have a
simplified model as close as possible to the full model, we need to
introduce the spatial correlations in the AP speed function. Indeed,
in the simulations of the full model, we have measured that the AP
speed is not a local function of the GJ but rather depends also on
the neighboring GJ values. As a first approximation and following
what we have observed in Fig. 5, we consider only two GJs in the
description of the AP speed. For example (see Fig. 11), for the AP
speed between Cell 1 and Cell 2, we have that c = cf(g1, g2), where
the subscript f denotes a “forward” approximation. On the contrary,
for the AP speed between Cell 2 and Cell 3, we could write the speed
as c = cb(g2, g1), where the subscript b denotes a “backward” approx-
imation. We have extracted the data for the AP speed as a function
of the GJ g-values in the full simulations in order to determine the
functions cf and cb.

In Fig. 12, we observe a striking similarity between the two
functions cf and cb expressing the AP speed as a function of neigh-
boring gap junction values. In this figure, we have measured the
speed between the cardiac cell i − 1 to i across the gap junction
GJ(i − 1) according to our notation definitions in the computing
algorithm. The fact that cf and cb are so similar indicates a strong
correlation between gi−2 and gi, which was already evident from
the observation of the full simulation displayed in Fig. 3(b). Indeed,
when FS = 2, the alternation of an up–down state in the conductance
is the dominant pattern. More importantly, Fig. 12 reveals that a
simple local approximation for the AP speed would not be sufficient.
Indeed, the AP speed depends on neighboring values of the GJ as it
was already apparent from Fig. 5. With this preliminary considera-
tion, we are nearly ready to proceed to the integration of Eqs. (12)
and (13). The two kinematic expressions for relating the time delay
with the GJ values are as follows:

1t1 =
δx

cf(g1, g2)
, (14)

TABLE II. Values of the parameters used to fit the value of c as a function of gi−1 and

gi. Here, FS is set to 2.

Parameter name Value

p00 0.006 082
p10 0.059 06
p01 0.039 16
p20 0.45
p11 −0.415

1t2 =
δx

cb(g2, g1)
. (15)

Because of the large similarity between the functions cf and cb, we
will use a single function c for the AP speed in the following analysis.
Note that AP speed functions are indeed different when varying FS,
but in order to keep the model simple, we use the same AP speed
function for all the FS values. To continue with the analysis, we can
either use a tabular value function defined from the data points or
define a fitting function that approximates the data shown in Fig. 12.
We will use the latter and define a polynomial approximation for the
AP speed as follows:

c = p00 + p10 gi−1 + p01 gi + p20 g2
i−1 + p11 gi−1 gi, (16)

where the fitting parameters are collected in Table II. Note that for
stability reasons of the integration of Eqs. (12) and 13), we can-
not just apply a straightforward fit to the data shown in Fig. 12,
but we have to impose some constraints on the fitting function.
We have found that to ensure stability, we have to add the two
conditions ∂gi−1

c|{gi−1=0.1,gi=0.1} > 0 and ∂gi−1
c|{gi−1=0.1,gi=0.4} < 0. We

have used the cftool of Matlab48 to perform such a fitting procedure.
The resulting fitting function is shown in Fig. 12(a) as a mesh-grid,
and the agreement between the data and the function is satisfac-
tory. We computed the coefficient of determination for the fit to be
R2 = 0.905.

At this stage, we are ready to perform the study of Eqs. (12) and
(13). We have simulated the system of Eqs. (12) and (13) with several
fixed values of the parameter FS and many initial conditions for g1

and g2 in the range [0.05–0.45]. From the simulations, it appears that
again, we have multistability, and in this case, we can have up to
four different competing attractors coexisting for a fixed value of
FS. As in the previously discussed single GJ case, the attractors are
limit cycles (LCs) with a period corresponding to the period of V(t),
which is fixed to T = 480 ms. Table III gathers the four competing
attractors and the numerical values associated with a characteristic
point on the LC (Poincaré section).

We study the local stability of the four competing attractors
that are identified in Table III in the following manner. We fix the
value of the parameter FS and start the simulation with initial values
of g1 and g2 close to the values given in Table III. We proceed to the
integration of Eqs. (12) and (13) until we reach a steady state that is
defined by a constant Poincaré section in time. We have displayed
the results of the local stability analysis in Fig. 13.

From Fig. 13, it is apparent that multistability is present for a
much larger range of FS values with respect to the single GJ case
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FIG. 12. AP speed functions extracted from the full simulations with N = 1000
coupled GJs. The “forward” approximation (a) cf represents the speed measured
between cell(i − 1) to cell(i) across the GJ(i − 1) expressed as a function of gi−1

and gi . Note that the fitting polynomial is also drawn from Eq. (16). The “backward”
approximation (b) cb is the same speed but this time expressed as a function of
gi−1 and gi−2. Both functions are very similar, indicating a strong spatial correlation
of the GJ distribution. The data points were extracted from a full simulation with
FS = 2.

TABLE III. Approximate values of the Poincaré sections for the four competing limit

cycles obtained simulating Eqs. (12) and (13). The last column indicates the stability

range of the corresponding solution.

Attractor name End g1 End g2 Local stability

Dw–Dw (I) ∼0.1 ∼0.1 1.24 < FS
Dw–Up (II) ∼0.1 ∼0.4 0.985 < FS < 993.1
Up–Dw (III) ∼0.4 ∼0.1 0.985 < FS < 993.1
Up–Up (IV) ∼0.4 ∼0.4 FS < 1.665

FIG. 13. Local stability of the four attractors defined in Table III as a function of
the parameter FS. The points shown in the figure correspond to stable LC (defined
by their Poincaré section). Panel (b) shows a close-up of the parameter range of
FS where there is coexistence of the four attractors (see the text for details).

considered in Subsection IV A. Indeed, Fig. 13(a) shows that there is
multistability for values of FS expanding three orders of magnitude.
More precisely, we have indicated in the last column of Table III the
range of FS for which we observe local stability of the corresponding
solution. It is noteworthy that in the range of 1.24 < FS < 1.665, we
have coexistence of the four attractors.

Let us illustrate the different basins of attractions of the com-
peting attractors for two selected values of the parameter FS (i.e.,
FS = 1.4 and FS = 500). To create Fig. 14, we simulate Eqs. (12)
and (13) starting from a grid of (101 × 101) initial conditions for g1

and g2 in the range [0.05–0.45]. Each simulation is continued until
a steady state is reached (hence, we always have a stable LC). The
panels (a) and (b) of Fig. 14 correspond to FS = 1.4. There, we dis-
play the color coded end values of g1 and g2 after convergence as
a function of the initial conditions g1(0) (x axis) and g2(0) (y axis).
For the case FS = 1.4, we observe that the four attractors of Table III
coexist as shown in the phase diagram of Fig. 14(c). Depending on
the initial conditions, the system will evolve toward one of the four
stable LCs. This multistability persists for a large range of FS val-
ues. Indeed, panels (d) and (e) of Fig. 14 correspond to FS = 500.
Here, we see that attractors (I)–(III) of Table III coexist as shown
in Fig. 14(f). This long-lasting coexistence of multistability while
varying the bifurcation parameter FS on such a large range is some-
what uncommon in physical systems and to our knowledge has not
been explored yet in detail. Another interesting point to note from
Figs. 14(d) and 14(e) is that for large and equal values of g1(0) and
g2(0), we are just at the border between two basins of attraction.
This means that a very minute noise in the initial conditions will be
sufficient to toggle either to attractor (II) or (III).
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FIG. 14. Basins of attraction and phase diagrams. The first row is for parameter FS = 1.4. Panels (a) and (b) show the final state values of g1 and g2 (in color code),
respectively. The axes indicate the initial value for g1(0) and g2(0). The phase diagram (c) shows the coexistence of all the states defined in Table III. The second row is for
parameter FS = 500. Panels (d) and (e) show the final states of g1 and g2, respectively. The phase diagram (f) shows the coexistence of three states defined in Table III. Note
that the same color scale is used for the four panels (a)–(b) and (d)–(e) to ease the comparison.

To summarize this subsection, we have seen that the
coupling of two GJs periodically driven also provides multistability
and that the range of the parameter FS leading to bistability is greatly
enhanced with respect to the single GJ case. Indeed, multistability
exists for a range of FS values from approximately 1 to 1000 (three
orders of magnitude), which was quite unexpected when compared
to the case of the single GJ.

C. Three coupled GJs

In Secs. IV A and IV B, we have been dealing with the single GJ
and two coupled GJ cases. Both cases have shown that the dynamics
of the GJ exhibit multistability by modifying the bifurcation param-
eter FS. However, the range of multistability has been shown to
increase by about three orders of magnitude when passing from the
single GJ to the two coupled GJ’s cases. This immediately poses the
obvious question of what happens when we consider three coupled
GJs. Is the multistability range for three GJs comparable to the two
GJs case or is it further modified? In this subsection, we address this
question. As the setting of the equations for the dynamics of the
three GJs case is very similar to the two coupled GJs case, we do

not dwell with all the mathematical details in this section. Here, we
rather concentrate on the main results. However, it is still good to
remind that in the three GJs case, we use the same fitting function
[Eq. (16)] for the AP speed as in the two GJs case. One can argue
that a more complex function for the AP speed involving three con-
secutive GJs could have been considered, but to keep the argument
simple, we did not examine this possibility here.

When considering three coupled GJs, we have now 23 = 8 pos-
sibilities for the dynamical attractors. We classify the attractor with
a binary notation where digits 1 and 0 mean that the final attrac-
tor state is with high or low values, respectively. Table IV contains
a summary of the different attractors and their local stability. We
observe from Table IV that in the range [1.25 < FS < 1.58], all the
eight solutions are locally stable, and therefore, we have coexistence
of the eight attractors. The GJ dynamics will select the final state
according to the initial conditions.

Figure 15 displays the basins of attraction of the different
solutions indexed in Table IV for FS = 1.5. For this value of the
parameter FS, we have coexistence of the eight solutions. In order to
render the figure easier to analyze, we have regrouped the solutions
(II)–(IV) into one group corresponding to all the permutations of
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TABLE IV. Approximate values of the Poincaré sections for the eight competing limit

cycles when dealing with the dynamics of three coupledGJs. The last column indicates

the stability range of the corresponding solution with respect to parameter FS.

Attractor name End g1 End g2 End g3 Local stability

000 (I) ∼0.1 ∼0.1 ∼0.1 1.24 < FS
100 (II) ∼0.4 ∼0.1 ∼0.1 1.25 < FS < 986
010 (III) ∼0.1 ∼0.4 ∼0.1 1.25 < FS < 986
001 (IV) ∼0.1 ∼0.1 ∼0.4 1.25 < FS < 994
110 (V) ∼0.4 ∼0.4 ∼0.1 0.98 < FS < 1.58
101 (VI) ∼0.4 ∼0.1 ∼0.4 0.98 < FS < 1.58
011 (VII) ∼0.1 ∼0.4 ∼0.4 0.98 < FS < 1.58
111 (VIII) ∼0.4 ∼0.4 ∼0.4 FS < 1.7

the (1, 0, 0) state. In the same fashion, we have regrouped solutions
(V)–(VII) into one group corresponding to the permutations of the
(1, 1, 0) state. Figure 15 illustrates that the final state of the dynamics
depends crucially on the initial conditions of the three GJs (indicated
by the three axes of Fig. 15).

As it was the case for the two coupled GJs, we observe that an
extensive range of the parameter FS allows for co-existing attractors.
The dynamical system consists of several metastable states. Like-
wise, as the number of cells (and of GJ) increases, the number of
metastable states with high and low conductance values increases,
resulting in mixed states. Here, we have not pursued this strategy
further, and we conclude with the three GJs case. In Sec. V, we have
considered a different approach. We take into account the same

FIG. 15. Basins of attraction for the dynamics of three coupled GJs. The color
code indicates the final state that depends critically on the initial values of the
GJs. The three axes represent the initial values of the GJs. Solutions (II)–(IV) and
(V)–(VII) of Table IV are regrouped to ease visualization (see the text for details).
Parameter FS is set to 1.5.

number of cells as in the simulations of the full model (N = 300) but
will consider a simplified description for the action potential.

V. SIMPLIFIED MODEL

The simulations of the full model presented in Sec. III were all
done with a short one dimensional strand of cardiac tissue N = 300
cells (corresponding to 3 cm in length). Even with this simple geom-
etry, the simulations are computationally demanding. This is due
to the fact that the interesting effect (conductance dispersion) that
occurs after a very long transient has elapsed. The reference time
scale is the basic forcing period of T = 480 ms. The typical time scale
on which conductance remodeling (“plasticity”) is observed is of the
order of thousands or more heartbeats. If one foresees to extend the
study to two or three dimensional geometry as it happens for a real
heart, we have two options: either use a super-computer to perform
the computations or to find a way to speed up the computations
by reformulating the model. In this section, we propose a simplified
model that retrieves the essential characteristics of the full model but
with a gain in computational speed of over four orders of magnitude.

The simplified model has been built upon several assumptions.

A. Initial assumptions

The major simplification comes from the decoupling between
the AP propagation and the GJ dynamics. This was already assumed
in the study of the reduced descriptions in Sec. IV. Again, we
will assume that the AP propagates throughout the system with a
constant morphology.

The strongest simplifying assumption comes now with the
decomposition of the AP morphology into four consecutive straight
segments as it is shown in Fig. 16. By doing this, we can exactly
integrate the GJ dynamics equations on the four segments and,
therefore, avoid the full numerical integration of Eq. (4) with a
very small time step δt = 0.01 (ms). Using this approximation, the
time evolution of the membrane potential simply writes as V = m t,
where m is the corresponding constant slope of the AP taken from
Table V and t denotes time. Between two consecutive myocytes in
the tissue strand, we have that

1V = 1φ = m · 1t = m ·
δx

c
, (17)

where 1t denotes the traveling time for the AP between two con-
secutive myocytes and δx is the length of the myocyte that coincides
with the grid size of the system δx = 0.01 cm.

Under this last assumption, 1φ is evaluated and taken constant
in each of the four phases of the AP morphology. Therefore, Eq. (4)
is reduced to a set of constant coefficient differential equations,

dgi

dt
=

g∞ − gi

τg

, (18)

where g∞ and τg are time independent, and this equation is readily
integrated,

gi = g∞ − B e−t/τg , (19)

where B is the integration constant. We determine the integration
constant by using the initial condition at the beginning of each of the
four phases of the AP morphology. We get that B = g∞ − g0, where
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g0 is the value of gi at the beginning of each time interval. Finally, the
expression for the conductance gi as a function of time is given by

gi(t) = g∞ − (g∞ − g0) e−t/τg . (20)

The expression in Eq. (20) leads to the time integration of the GJ
dynamics in four steps (td; tp; tr; tf) rather than an integration with
Nt = 48 000 time steps in the full model. We obtain a piecewise

defined function depending on the time interval along the AP mor-

phology. In an algorithmic fashion, we get that if g(n)
i (t) denotes the

conductance value after the n-beat at the GJ located at the position
i, by using Eq. (20) in the four stages corresponding to the AP mor-
phology, we can compute the value for conductance at the next beat

(n + 1), g(n+1)
i (t) with these four steps,

g(n+1)
i (t) =



























g(n,0)
i,∞ − (g(n,0)

i,∞ − g(n,0)
i ) e

−t/τ
(n,0)
i,g , t ∈ [0, td],

g(n,d)
i,∞ − (g(n,d)

i,∞ − g(n,d)
i ) e

−t/τ
(n,d)
i,g , t ∈ [td, td + tp],

g
(n,p)

i,∞ − (g
(n,p)

i,∞ − g
(n,p)

i ) e
−t/τ

(n,p)
i,g , t ∈ [td + tp, td + tp + tr],

g(n,r)
i,∞ − (g(n,r)

j,∞ − g(n,r)
i ) e

−t/τ
(n,r)
i,g , t ∈ [td + tp + tr, td + tp + tr + tf],

(21)

where the super-indices 0, d, p, r indicate the time at the beginning of
the corresponding time interval (i.e., td, tp, tr, tf). The values for gi,∞

and τi,g are also evaluated at the beginning of each of the four time
intervals and assumed to be constant in the corresponding interval.
The set of Eq. (21) gives a description of the GJ dynamics akin to
a discrete map or a cellular automata model,49 and this leads to an
obvious significative gain in CPU time.

The integration of Eq. (18) requires the knowledge of the AP
speed c. A first version of the model used the local approxima-
tion [Eq. (10)] to relate the local values of the conductance with
the AP speed, but this approximation was too crude and the model
was unable to reproduce the GJ dispersion. Hence, we considered
the non-local relation between the AP speed c and the conduc-
tance of neighboring cells given by Eq. (16). This corresponds to an
approximation, but it was sufficient for the purpose of the analysis.

B. Comparison between the full and simplified model

In order to use the simplified model as defined in Eq. (21) with
the AP speed fitting function defined in Eq. (16), we had to optimize
the parameter value of td. Indeed, as seen previously, the parame-
ter td defines the depolarization time and is related to the maximum
upstroke velocity V̇M. This parameter is crucial in the problem, and
the GJ dynamics is critically affected by this parameter. There is a
large uncertainty on the value of td, and we decided to let this param-
eter to vary freely. We optimize the td parameter in order to bring the

TABLE V. Estimated values for the approximation of the AP morphology by four

broken segments. Themaximum uncertainty is on the determination of the rapid depo-

larization phase td. Note that the sum of the times for the four phases must satisfy the

requirement that tr + tp + td + tf = T = 480 (ms).

Phase Approx. duration (ms) Estimated slope (mV/ms)

td 2.15 md ≈ 51.16
tp 169.08 mp ≈ −0.1183
tr 101.09 mr ≈ −0.8903
tf 207.68 mf = 0

results of the simplified model as close as possible to those of the full
model.

To quantify the difference between the results of the full and
simplified models, we use a combined L1 norm,

L1 =
∑

cases

| < g >F −<g >S |/| < g >F |, (22)

where cases in Eq. (22) refers to different predictions associated with
the two models. In the optimization process, the L1 norm will be
minimized as a function of td. Let us be more explicit about the cases
in Eq. (22). They refer to the three values of noise strengths and
values for the bifurcation parameter FS up to 104 as illustrated in
Fig. 4.

By setting the parameter to td = 0.791 ms, we obtain for the
conductance transitions as a function of FS a reasonable agreement

FIG. 16. Approximation of the AP morphology by four line segments (shown with
red dashed lines). The threshold values for the potential (in normalized units) are
V = 0.01, V = Vmax ≈ 1.1, V = 0.9, and again, V = 0.01. The time duration
for the four broken phases are summarized in Table V.
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FIG. 17. Space–time plot of the conductance dynamics obtained by iterations of
the simplified model [Eq. (21)]. The parameters are for the initial noise strength
NS = 10−4 and FS = 2.

with the full model. An example for the integration of the sim-
plified model is shown in Fig. 17. The parameters for Fig. 17 are
NS = 10−4 and FS = 2, and one can visually compare the simula-
tion of Fig. 17 with the one displayed in Fig. 3(b). For a quantitative
comparison between the simplified and full model, we rather have
to look at Fig. 4. One observes that the values of PUP obtained with
the simplified model slightly underestimate those of the full model.
However, the long intermediate metastable states are well captured
by the simplified model as shown in Fig. 4.

We have found that the simplified model reproduces in an
acceptable manner the results of the full model. It is rather obvi-
ous that a perfect quantitative agreement is not reached, but the
simplified model contains approximations of the morphology of
the action potential and other approximations that are presumably
not accurate enough. However, the gain of four orders of magni-
tude in computation with the quasi-quantitative agreement is very
appealing to pursue this venue further.

VI. CONCLUSIONS

This paper has studied the propagation of a cardiac action
potential in a one-dimensional fiber with cells electrically coupled
through gap junctions. The dynamics of the gap junctions modifies
the adjacent cardiac cells’ conductance, which depends on the inter-
cellular voltage difference. Dynamic gap junction conductance has
been shown50,51 to change propagation speeds close to the point of
propagation failure. As the AP speed is decreased, the intercellular
electrical gradients increase, resulting in reduced conductance and
electrical uncoupling. However, one should notice that, due to the
slow time scale of the gap junction dynamic, this process is slow,
occurring over many heartbeats.

Dynamic electrical uncoupling has been observed experimen-
tally for two coupled cells on which an action potential delay is
externally imposed.52,53 This effect was observed for gap junctions
formed by connexins Cx45, which present a stronger dependence of
intercellular voltage (a higher value of FS, in the notation we have

followed), but not for the connexins Cx40, whose transmembrane
voltage dependence curve is broader.15

Here, we have reproduced this dynamical uncoupling at long
time scales. Furthermore, we have used a simplified description with
a low number of cells to relate the uncoupling to the existence
of multistability, thus explaining the previously observed effect24

of the emergence at a long time scale of a very disordered state
with inhomogeneous intercellular conductances. The effect on the
action potential conduction velocity of the heterogeneities in the
conductance distribution has also been addressed.

In addition, we have derived a simplified model for AP prop-
agation that reproduces semiquantitatively the results of the full
model at a much lower computational cost. This simplified model
will allow producing very long simulations that are needed in the
study of the cardiac phenomena occurring at a large time scale.

From a physiological point of view, it is well known that
spatial dispersion of repolarization underlies the development of
life-threatening ventricular arrhythmias. Spatial dispersion in the
cardiac tissue has been associated with ion channelopathies and het-
erogeneous expression of gap junction proteins.54,55 These effects
are often mitigated by the electrotonic interactions in the cardiac
tissue. It would be interesting to incorporate the GJ dynamics,
channelopathies, and electrotonic effects together in a mathematical
model to test the different scenarios for explaining the emergence of
the spatial dynamic heterogeneities.

Dynamic uncoupling is also a well-known phenomenon in
neurons, where it is associated with brain plasticity.20 In simulations
of a one-dimensional nerve axon and a two-dimensional network
of coupled neurons, it has been shown that GJ gating could lead
to unidirectional conduction block and wave breaks.21 These sim-
ulations suggest that a similar effect could be observed in cardiac
tissues in situations of decreased electrical coupling, as in ischemia
or fibrosis. Our model shows that the GJ dynamics can give rise
to heterogeneities in intercellular conductances, even for a perfectly
homogeneous tissue. It would be interesting to study how this affects
the trigger of arrhythmias.

We have considered a simple Hodgkin–Huxley (HH) type gate
model for the description of GJ dynamics. However, more detailed
models exist that consider transitions between low and high conduc-
tance conformations of the connexins that form the GJ. These more
complex models are based on a Markov formalism from 4 up to 16
states.21,33,34 In those models, the transition probabilities depend on
the intercellular potential. The conductance is then obtained as the
average of a stochastic ensemble of GJs. In general, these Markov
models give similar results to a HH model. However, they natu-
rally incorporate the fluctuations in the GJ conductance. This is an
important point because, as we have observed in this paper, the
amount of noise in the conductances’ initial states is paramount
in determining the final GJ states. Thus, a straightforward exten-
sion of our work would be to consider the effects of dynamic noise.
Two complementary ways are possible: either by considering a set of
stochastic GJs or adding an ad hoc noise term to the HH equations.

We are aware of the limitations of the simple mathemati-
cal model presented here. In particular, we have not considered
the ephaptic coupling,51,56 which significantly affects low electri-
cal coupling. There are also two important points that we leave
for the future. One is a better understanding of heterogeneous
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conductance’s effect on AP propagation speed, probably through
mean-field homogenization.26 The other is the generalization of the
model to two (or three) dimensions, where the possible proarrhyth-
mic effect of the conductance heterogeneities can be assessed. This
is, however, not a trivial point due to coupling anisotropy among
cells that would require to consider a more detailed model with
intracellular spatial discretization.
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APPENDIX: SPACE CONSTANT EVALUATION

The space constant λ is an important concept in the description
of the cardiac action potential propagation. It corresponds to the
characteristics of the spatial length scale associated with the action
potential wave. In the cardiac syncytium description, one often
observes a phenomenon called “current redistribution” between sev-
eral portions that constitute the cardiac tissue. This redistribution of
currents from the intracellular to extracellular space takes place over
a spatial extent of a few λ.57 The space constant λ is often assumed
to be approximately 20 times longer than the individual myocyte
length,58 although the space constant varies depending on the type
of cardiac myocyte. Here, we will provide a theoretical estimate of
the space constant λ for our model and see how λ is involved in
the description of the wave propagation in a simple monodomain
formulation.

To start with, we need to define the resistance times unit
area Rm (units are k�.cm2) associated with our specific membrane
model,

1

Rm

=
dIion

dV

∣

∣

∣

∣

V=Vrest

, (A1)

where Iion is the ionic current through the membrane and V is
the transmembrane potential; units are µA/cm2 and mV, respec-
tively. The membrane resistance times unit area Rm is dependent on
the voltage, but we evaluate its value close to the resting potential
Vrest. Specifically, in the four current model, we obtain straightfor-
wardly that only one current Iso is non-vanishing close to the resting
potential and that

1

Rm

=
gso

uc

; (A2)

the numerical values used here give that Rm = 7.028 k�.cm2. From
there, we can readily compute the time constant of the cable
equation using the RC time constant τ = RmCm, where Cm is the
membrane capacitance per unit area and its numerical value is
Cm = 1 µF/cm2. Here, we compute that τ = 7.028 ms, and we have
checked that this value is indeed well reproduced in the numer-
ical simulations. To compute the space constant, we can use the

definition of the diffusion parameter in the monodomain equation
that we have also set as a parameter of the problem,

g D =
λ2

τ
; (A3)

recalling that we have set D = 1.54 · 10−3 cm2/ms and if we choose
g = 0.4 (dimensionless) as a starting value for the GJ values, we read-
ily obtain for the space constant that λ ≈ 6.58 10−2 cm. This value is
between six to seven myocyte lengths, and it does coincide with what
is observed in some test numerical simulations.

Let us illustrate how the space constant shows up in the numer-
ical simulations. We will simulate Eqs. (1) and (2) with a constant
value of g = 0.4 (the dynamics of g is frozen here). We are interested
in showing that even with a homogeneous system, the space constant
will emerge from the simulations. We compute the local velocity of
the propagating AP as follows: at each grid point (separated by a dis-
tance δx = 0.01 cm), we register the time in the depolarization phase
when the voltage reaches 60% of its maximum value. Then, the local
velocity is computed by δx/1t, where 1t is the transit time of the
AP front between successive grid points.

Figure 18 displays the AP propagation results when the GJ is
held constant to g = 0.4 throughout the simulation. It is interest-
ing to note that the AP speed is not constant but exhibits small
periodic variations. This phenomenon is known as saltatory con-
duction. This effect becomes stronger when the conductance is
further decreased.59 Figure 18(b) shows the auto-correlation of the
AP speed, and we observe a marked secondary peak for a spatial lag
of eight grid units in agreement with the space constant λ of the
problem. The small difference between λ and the lag at which the
secondary maximum appears is presumably due to the numerical
scheme that we use to integrate the equation. A different numerical
scheme will give slightly different results.

FIG. 18. Saltatory wave speed. Panel (a) displays the local AP speed as a func-
tion of space. The distance between consecutive grid points is δx = 0.01 cm.
Panel (b) shows the spatial auto-correlation function of the wave speed as a func-
tion of the spatial lag ξ . Here, again, the spatial lag is expressed in a grid unit.
Note that g = 0.4 was held constant throughout the simulation.
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FIG. 19. Maximum upstroke velocity. Panel (a) displays the maximum upstroke

velocity V̇M as a function of space. Panel (b) shows the spatial auto-correlation

function of V̇M as a function of the spatial lag ξ . Note that g = 0.4 was held
constant during the simulation.

Figure 19 displays the maximum upstroke velocity V̇M com-
puted at each grid point in the simulation. Recall that the AP
upstroke is a significant factor in the GJ dynamics. Figure 19(a)
shows that V̇M, in the same manner as the AP speed, oscillates in
space. This confirms that even with a homogeneous setting, the sys-
tem will generate fluctuations again at the scale of the space constant
λ. Note that the fluctuations in the case of V̇M are one order of
magnitude smaller than the fluctuations of the AP speed. Indeed,
Fig. 19(a) shows that only the fourth precision digit is affected in
this case. Also, important to comment is that the values of V̇M cal-
culated by the present model are somewhat smaller than the known
values of V̇M for human cardiac myocytes.60 Figure 19(b) confirms
that the spatial periodicity of V̇M is approximately equal to eight grid
units, as was the case for the periodicity of the AP speed shown in
Fig. 18.

As a partial conclusion, we have shown that in the case of
simulation where the GJ dynamics was frozen, one still observes spa-
tiotemporal fluctuations in the AP speed and shape. The velocity
fluctuations are one order of magnitude larger compared with the
distortion of the AP shape. The fact that we observe spontaneous
fluctuations due to the AP propagation is important. These fluctu-
ations are the seeds for the separation of the GJ dynamics that we
observe in the simulations as shown in Fig. 3(b).

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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