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Abstract

The aim of this work is to use biomarkers extracted from
high-resolution voltage maps of atrial fibrillation (AF) pa-
tients in order to make predictions about future “redo”
procedures. We collected maps of the left atrium of 122
patients, prior of being treated for AF The bipolar voltage
maps were extracted with the Rythmia system from Boston
Scientific and subsequently analyzed in the MATLAB en-
vironment. The present study focuses on three biomarkers
extracted from those maps. Two are associated with the
bipolar voltage measurements on the map, i.e., the mean
voltage and the voltage dispersion on the map. The third
indicator is the area of the atrium evaluated from the map.
The data are used for feeding a supervised classification
algorithm. The output variable is a binary variable that
is set to 1 if the patient will need a “redo” procedure in
the twelve months following the cardiac intervention and 0
otherwise. We show that the biomarkers have some statis-
tical power in predicting future outcomes. Especially the
mean voltage on the map is the best predictor of the future
outcome. We determine the cutoff value for the mean volt-
age based on the best prediction accuracy of Vm=0.542
mV in agreement with previous studies. We discuss some
extensions of this study that could allow improvements in
predictive power.

1. Introduction

Cardiovascular diseases have been identified as a re-
search priority in the European Union (EU). The time has
come to efficiently combine the Information Technology
resources in the applied medical field. This synergy will
optimize medical treatment and reach the long sought-
after “personalized medicine .” Although diagnostic ap-
proaches and therapies have drastically improved over the
last decade, effective, validated, and auditable tools for the

integrated assessment of cardiac function in clinical prac-
tice have yet to be developed. Atrial fibrillation (AF) is
one of the most prevalent cardiac pathologies, considered
an epidemic by the World Health Organization, affecting
7.6 million people over 65 years of age in Europe [1]. AF
incidence will progressively increase in the coming years
because it is closely associated with aging (projected to be
14.4 million by 2060). AF is associated with a high risk
of morbidity and mortality and a high social and health-
care cost, mainly because 10 to 40% of patients with AF
require hospitalization. AF is a progressive disease: most
patients begin with paroxysmal AF and progress to persis-
tent AF over time, although some of them have lifelong AF
crises without persistent episodes, while in others, persis-
tent AF is the first arrhythmic event. Some studies suggest
that the progression from paroxysmal to persistent AF is
associated with an increase in the morbidity and mortal-
ity of AF. However, to date, it is unknown how to predict
this evolution. To assess this point, we have access to a
cohort of 122 patients. Each of them has been treated for
AF. Before the pulmonary vein PV ablation therapy, a very
high-definition voltage map of the left atrium was acquired
(as shown in Fig.1). In this paper, we use the tools of ma-
chine learning ML to build a classifier to predict the pa-
tient’s state in the year following the cardiac intervention.
Statistical learning has emerged recently as a subfield of
Statistics, focused on supervised and unsupervised model-
ing and predictions. In recent years, progress in statistical
learning has been accompanied by increased availability
and user-friendly tools. In this paper, we will extensively
use MATLAB’s Statistics and ML Toolbox.

2. Methods

We included 122 consecutive patients with paroxysmal
or persistent AF for pulmonary vein isolation (PVI) us-
ing an ultra-high definition voltage mapping (uHDM) sys-
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tem in the University Hospital (CUN). The study was con-
ducted following the ethical principles of the Declaration
of Helsinki. All patients gave their informed consent.

Figure 1. Bipolar voltage map, color scale indicates volt-
age in mV units. Axes indicate relative positions of the left
atrium in mm units. The PVs have been removed from the
map (see text for details).

2.1. Data acquisition

Mapping of the LA was conducted with a uHDM sys-
tem (Rhythmia; Boston Scientific Corporation, Marlbor-
ough, MA) and a 64−electrode basket−type catheter (In-
tellaMap Orion, Boston Scientific Corporation) during
paced atrial rhythm. Bipolar electrogram recordings were
filtered at 40 to 400Hz and were saved in a file format
suitable for further analysis in the MATLAB environment.
Only points located within 2 mm of the external surface
of the map were considered for analysis. After mapping,
PVI was performed in all cases following a previously de-
scribed protocol. The follow-up of each patient includes a
status binary variable “redo” that corresponds to a recur-
rence of the AF (1 for TRUE and 0 for FALSE) inside the
year following the surgical procedure.

2.2. Data analysis

All the 122 uHD maps were analyzed to obtain several
indicators for the subsequent statistical analysis. All the
data analysis was done using the commercial mathematical
software MATLAB [MATLAB and Statistics Toolbox Re-
lease R2012a, The MathWorks Inc., Natick, Masachusetts,
United States] in several stages:
Preprocessing of the signal
Bipolar electrogram recordings were filtered at 40 to
400Hz and were saved in MATLAB file format. The values
of the bipolar potentials are expressed in millivolts (mV)
at each vertex site. The PV of the acquired maps were
extracted semi-manually, i.e., a first extraction was auto-
matically done by the Rhythmia software, and a second,
supervised extraction (correction) was done manually for

each map. The resulting map is shown in Fig. 1. The
number of points defining the map is in the range 12,567
± 5,486 points per map.

Figure 2. Spatial bipolar voltage distributions for 2 se-
lected individuals. The fits indicate the best linear fits for
these log-lin scale histograms.

Features extractions

For each map, the following parameters were evaluated.
(a) The spatial average value of all bipolar potentials on the
LA surface (Vm). (b) The slope of the voltage histogram
(Vs), where in the histogram, we represent the relative fre-
quency in a logarithmic scale on the vertical axis and the
bipolar potential on a linear scale on the horizontal axis.
Since the spatial voltage distribution typically follows an
exponential distribution, we choose the slope of the scatter-
plot in these log-linear scales as the simplest way to char-
acterize it. In each case, we verified that the corresponding
adjusted R2 was appropriate and that the 95% confidence
interval for the slope estimation was sufficiently narrow.
We used the MATLAB command “hist(y,M)” for the bin-
ning method, with M number of bins set to 50 for all the
analyzed data sets. From this scatterplot, we used linear
interpolation to calculate the slope. By measuring the his-
togram slope, we obtained a characteristic voltage decay
for each patient (expressed in mV−1) (see details in Fig.
2). (c) a third “geometrical” indicator was extracted from
each map. It corresponds to the area of the left atrium (in
mm2) after the removal of the PV.

In the two illustrative examples shown in Fig. 2, we
computed that for data1 VS= -0.9511 (units mV−1), with
a standard error SE=0.0332 and R2=0.95, we also evalu-
ated that Vm=1.2137 mV and A=95.4 mm2. Likewise, for
data2, we computed that VS= -0.4625 (units mV−1), with
a standard error SE=0.0208 and R2=0.92, we also evalu-
ated that Vm=1.1941 mV and A=97.2 mm2 [2].

All the data were collected in a data table of 122 rows
and 4 columns. The first three columns correspond to the
three indicators defined above and the last column corre-
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sponds to the binary “redo” variable.
Correlations between the 3 predictors: Vm, VS, Area

We evaluate the possible relation between the three co-
variates variables Vm, VS, and Area. We do that by com-
puting the correlation matrix and the dispersion plots of the
indicators taken two-by-two. The MATLAB commands
are corrcoef and corrplot.

Logistic regression between “redo” and the 3 predictors

If the outcome variable is binary, a standard model is a
logistic model when the probability of the outcome vari-
able is modeled with the covariates X following the logis-
tic function:

p(X) =
eβ0+βiXi

1 + eβ0+βiXi
. (1)

If one uses more than one covariate, the model is called
multiple logistic regression. The logistic regression is
computed with the MATLAB command fitglm. The good-
ness of fit is evaluated with the deviance tests and the stan-
dard errors (SE) and p-values of the best coefficient esti-
mates of the logistic equation Eq. (1).
Comparison of different ML classifiers

The advent of Machine Learning (ML) algorithms has
brought forward many of the classifier tools as an addi-
tional statistical method [3]. There exist many classifi-
cation techniques, or classifiers, that one can use to pre-
dict a qualitative response We can cite without being ex-
haustive: logistic regression, linear discriminant analysis,
quadratic discriminant analysis, naive Bayes, random for-
est, and K-nearest neighbors. MATLAB conveniently inte-
grates a tool called classificationLearner that allows one to
probe several different classifiers and rank them according
to their performances. The ranking between classifiers is
usually done by comparing the overall accuracy of the clas-
sifiers, the sensitivity (also called true positive rate TPR),
and the specificity (1-FPR), where FPR is the false positive
rate, and the area under the curve (AUC) for the receiver
operating characteristic (ROC) curve.

3. Results and discussions

We compute and discuss the several aspects that were
defined in the Method section.

Evidence of correlations between the 3 predictors

We note that the two electrical biomarkers, Vm and VS,
show a significant level of association. The Pearson co-
efficient of correlation is given by r=0.534, with a cor-
responding p-value< 10−9. The geometrical indicator
(Area) has no significant linear correlation with the two

Figure 3. Scatterplots between the 3 predictor variables.
A positive correlation shows up between Vm and VS.

electrical biomarkers. Note that the scatterplot of Vm ver-
sus VS shows clearly that the existing association between
the two variables is not linear.

Results for the logistic regression fits

Table 1. Values for the logit coefficients, their SE and
p-values, the deviance and the deviance test p-value.

βi SE p-value Deviance Dt. p-val.
only Vm 119.6 < 10−6

β0 = 1.201 0.524 0.022
β1 = −2.287 0.578 < 10−4

only VS 127.1 < 10−4

β0 = −2.470 0.493 < 10−6

β1 = −1.865 0.540 5.6 10−4

only Area 142.8 0.211
β0 = −2.080 0.935 0.026
β1 = 0.0079 0.0063 0.211
All three 116.5 3.8 10−6

β0 = −1.212 1.501 0.419
β1Vm = −1.767 0.700 0.012
β1VS = −0.667 0.603 0.269
β1Ar. = 0.0098 0.0069 0.162

We have performed three univariate logistic regressions
for the three different predictors and a multivariate logistic
fit where we have taken the three variables together. The
results for the coefficients of the fit and the goodness of the
fits are summarized in Table 1.

We used the standard deviance test to rank the different
logistic regressions. Unsurprisingly, we observe that the
best predictor for the outcome is the mean voltage Vm.
When the three predictors are considered, we see that the

Page 3



VS is no longer significant at the α = 0.05 level and could
be removed from the predictors. The strong correlation
between Vm and VS makes VS redundant.

As an application of the logistic regression, we have
computed the confusion matrices associated with a vari-
able cutoff probability π in the case of the fit with the only
Vm predictor corresponding to the first case in Table 1. We
obtain that the optimum cutoff value for maximizing the
overall accuracy is π = 0.49 with a corresponding value
of Vm= 0.542 mV. For this value of the optimum cutoff,
the overall accuracy is 82 %, with a specificity of 95 %
and a sensitivity of 47 %. The confusion table is given
below:

Table 2. Confusion matrix for the “redo” predicted val-
ues for the logistic regression associated with Vm and a
selected Vm cutoff equals to 0.542 mV.

Predicted logit
Yes No

A
ct

ua
l Yes 16 18

No 4 84

Results for different classifiers
Finally, we were interested in testing the performance of

other ML classifiers. MATLAB command classification-
Learner allows testing on a dataset with several classifiers
at once. We have used our data to test the classifiers and
indicated the five best classifiers according to the overall
accuracy in Table 3. The different classifiers are trained
through the standard 5-fold cross-validation algorithm.

Table 3. Results from the five best ML classifiers ranked
by their overall validation accuracy.

Method Accuracy AUC Specific. Sensitiv.
Logit 0.77 0.75 0.91 0.41
Coarse tree 0.762 0.63 0.90 0.41
Bagged trees 0.762 0.75 0.91 0.38
Naive Bayes 0.754 0.76 0.85 0.50
Lin. SVM 0.746 0.72 0.94 0.24

The ROC curves are shown in Fig. 4, where the classi-
fiers have very similar specificity and sensitivity, as indi-
cated by the corresponding colored symbols.

Looking at Table 3, we see that while the overall accu-
racy is not great, the specificity is relatively high for all
the classifiers. Type 1 error (false positive) is maintained
at small values. This agrees with what is usually recom-
mended in the medical literature when the prevailing as-
sumption is the status quo or default assumption.

The present study indicates that we obtain some predic-

Figure 4. Roc curves for several ML classifiers. The sym-
bols indicate the selected classifiers for each method (see
Table 3 for corresponding specificity and sensitivity).

tive power (somewhat limited) by analyzing the patients’
high-definition voltage maps of the atrium. Further studies
are needed to estimate the limit of prediction that we can
reach with those maps.
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