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In the present work we study the deterministic spinrdynamics of an anisotropic magnetic particle in te presence of a time dependent
magnetic field using the Landau-Lifshitz equation.In particular, we study the case when the magnetifield is homogeneous with a
fixed direction perpendicular to the anisotropy direction and consists of a constant and a time-periadpart. We characterize the
dynamical behavior of the system by monitoring thé.yapunov exponents and by bifurcation diagrams. Weéocus on the dependence of
the largest Lyapunov exponent on the magnitude anftequency of the applied magnetic field as well asn the anisotropy parameter of
the particle. We find rather complicated landscapeof sometimes closely intermingled chaotic and norhaotic areas in parameter
space with rather fuzzy boundaries in-between. Foactual experiments that means the system can exhilmnultiple transitions between

regular and chaotic behavior.

Index Terms— Chaotic dynamics, Lyapunov spectrum, magnetizatio dynamics, time dependent magnetic field.

|I. INTRODUCTION

Il. MODEL

E XPERIMENTAL technigues nowadays have accessed thewe consider the dynamics of the magnetizatidn of a

nanoscale and allow for remarkable developmentseof
technological applications. Biomedicine or high gis@n
instrumentation are based on nanostructures. Alifisignt
application in material science are magnetic pladicand
clusters for recording media [1]; here, magnetoratieversal
is a fundamental feature of data storage. Thelddtatudy of
the dynamics of magnetic systems is important aiid be
dealt with here.
In magnetism nonlinear problems have been widalgist,
cf. Refs. [2-3]. Models have been used in bothcrdie [4—7]
and continuous magnetic systems [8-9]. Severalrarpats
of chaotic behaviors in magnetic systems have beparted
[10-13]. Typical magnetic samples are yttrium irgarnet
spheres [10]. It is worth mentioning that, by fenagnetic
resonance technique, different types of routeshaios have
been found, such as period-doubling cascades, -pes&sidic
routes to chaos or intermittent routes to chaoss Thplies
that there is no universal mechanism leading cliadtese
systems, and therefore a theoretical descriptiorhighly
complicated.

The aim of this paper is to investigate the chagyicamics
of an anisotropic magnetic nanoparticle under tifleénce of
a time dependent external magnetic field. The Hafte
assumed to be perpendicular to the anisotropy tihreand to
consist of a constant and a periodic part. We tateu
numerically
diagrams, thus characterizing the dynamical behavio
particular, the maximum Lyapunov exponent is presgbnin
the form of two-dimensional maps as function of talevant
parameters of the system [14]. In Sec. Il, the tt&cal model
is described, the numerical results are providetl discussed
in Sec. I, and finally in Sec. IV a summary iven.
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the Lyapunov exponents and bifurcatio

monodomain magnetic particle. The temporal evotutibthe

system can be modeled by the Landau-Lifshitz eqoati
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describing pure rotations, sin¢® | is conserved. Herey is

the gyromagnetic factor, which is associated whigh ¢lectron
spin and whose numerical value is approximatelyemgiby

|VElV, o= 2.2% 10mA™s™?, and »#n denotes the
dimensionless phenomenological damping coefficigrith is
a material property with typical values of the ard®™ to
107 in garnets and.0? or larger in cobalt or permalloy [3].
For small damping/;? <1, the Landau-Lifshitz equation is

equivalent to the Landau-Lifshitz-Gilbert equatifirb]. The
internal magnetic field,I', acting on the magnetization is

given by T=H-B(MA)i, where H is the external

magnetic field andB measures the anisotropy along the

axis, which we take as the z-axis in the followinthis
anisotropy is uniaxial and the constaft depends on the
specific substance and sample shape [16] and caoditve
or negative. The external magnetic fidil is taken along the
anisotropy axis. The field strength has a constami a

periodic partH =(H, +H,cos(at))X where the amplitudes
H,,H, and the frequencyw are constant.

For zero damping(7 =0)and without parametric forcing
(H, =0) Eq. (1) is conservative. With dissipation and by t

periodic injection of energy the magnetic partisl@ut into an
out-of-equilibrium situation. Then, the magnetipatiof the
particle can exhibit a rather complex behavior,.,equasi-
periodicity, bi-stability and chaos [4]. In the tit reference
the existence of chaos due to the external field heaen
discussed for few parameter values, while in thievieng we
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provide a more complete characterization of theotiba
regime, in particular its dependence on the constiaid
amplitudeH,, the frequency w, and the anisotropy
constaniB, thereby revealing a rather complicated struciure
parameter space.
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Fig 1: (a) (Color online) The value of the largpssitive Lyapunov exponent
(LLE) is shown in a color-coded gauge as a functibthe amplitudeh, and
the frequencyQ of the driving field forh, =0.2, £=4.8, and /7=0.02.

Frame (b) depicts the zoomed-in white rectanguftaa ashown in (a) and
frame (c) magnifies the white rectangular areabdf The resolutions are: (a)

AQ =107 and Ah=5x10°; (b) AQ=2x10%°and Ah =5x10"*; (c)
AQ =2x10* andAh, =2.5x10" .

We analyze the dynamics of Eq. (1) by evaluatirglérgest
Lyapunov exponent (LLE) and by bifurcation diagrarbe
exponential divergence of two initially close trtjries,
which is characteristic for chaotic dynamics, isuatified by
(positive) Lyapunov exponents. From the generabmheof
dynamical systems it is known those systems witteeth
dynamical degrees of freedom, like the one studiede,

NUMERICAL RESULTS

cannot have more than one positive Lyapunov expofiéh
and it is, therefore, sufficient to consider theB.LExploring
the dependence of the LLE on the different pararaaiéthe
system, one can identify the areas in parameterespehere
the dynamics is chaotic (LLE positive), and thosevéang
regular, periodic or quasiperiodic, dynamics (LLErq@).
Following an iterative zoom resolution process aipd in
Ref. [14], we investigate the dependence of theadyos on
very small variations of the system parameterss Téchnique
is generally utilized for studying dynamical sysgerthat
contain chaotic phases with highly complicated iateresting
boundary topologies, e.g., curves where networkstable
islands of regular oscillations with ever-increasin
periodicities accumulate systematically.

In order to integrate the equations of motion wstfscale the
magnetizationm =M /M, by the saturation magnetization

M., such thaim |- 1. The time is rendered dimensionless by
setting 7 =tyM, using the appropriate Larmor frequency
1/yM, [3]. Typical e.g.
M, =1.42x10 A /m for cobalt materials, leading to a time

experimental values are,

scale(rzl) in the picosecond range, =3ps. The present

technology is able to follow experiments even ae th
femtosecond scale. Indeed, Beaurepaire et al. i8¢ the
first to observe the spin dynamics at a time stalew the
picosecond scale in nickel [18] and more recenthg tas
observed phenomena at a time scale less than 1J@0-20].
By this scaling, the dimensionless field and fretyeare

h=H/M, and Q=w/(yM,), respectively. To avoid

numerical artifacts, it is suitable to solve Eq) (b the
Cartesian representation

Z—n;‘=hxf7(m§+nf)+ﬁ(nwy+fmnf) 2)
d

d—n}=-m(m+f7wm)+ﬁ(fmnﬁ—mm) (3)
%—”;Hhx(my—nmy)—ﬂn(nﬁnﬁ)ny 4)

There is a simple homogeneous and stationary ealuti
m =X, with the magnetization parallel to the magnetic
forcing. Driving the system further away from thatenary
state, the amplitudesn, and m, do not remain small and a

rather complicated behavior can occur, includingigakc,
guasi-periodic and chaotic dynamics.

In order to find the chaotic regimes, we have
integrated Egs. (2)-(4) via a standard fourth oRlenge-Kutta
integration scheme with a fixed time stedr =0.01

guaranteeing a precision af® for the magnetization field.
After an initial transient time of =1024 has been discarded,
the Lyapunov exponents are calculated during a Span of

7 =32768. The Gram-Schmidt orthogonalization process is
performed after every 100th time step. The ereorin the
evaluation of the Lyapunov exponents has been eukbly
using er = o(A)/max(4,), where o(4) is the standard

deviation of the maximum positive Lyapunov exponednis
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of the order of1l%, which is sufficiently small for the purposetopologies [14] between chaotic and regular regince=sarly
of the present analysis. visible in frame (b). Finally, for small frequensi¢here is a
@ kind of complex mesh with chaotic and non-chaotieaa
| interlaced, cf. frame (c). This almost regular @attcontinues
|0 6 to exist asymptotically down to zero frequency, whéhe

LLE is vanishing.
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Fig 3: (a) Bifurcation diagrams of and ¢ as a function ofh, at Q =2.5,
B=48, n=0.02 and h =6.5. Frames (b) and (c) represent the phase

portraits for two specific values df,: h, =2 (b) andh, =2.85(c). They are
depicted in the bifurcation diagrams as a dot asglere, respectively.

Fig 2: (Color online) The largest Lyapunov expon@ritE) as a function of .
h, andh at Q=2.5, = 4.8and/ =0.02. Frame (b) represents a zoom of Secondly, Fig.(2) shows the color-coded LLE asrecfion of

the upper white rectangular area in frame (a), evifikme (c) zooms the both, the constant and oscillating field amplltud@,and hl'
lower-left white rectangular area. The resolutioase: (a) and (b) respectively. Here we fix the frequency @t= 2.5, where in
Ah, =5x10° and Ah =5x10°; (c) Ah, =107 and Ah, = 2x10°. Fig.(1) a rich variety of chaotic regions is preséctually, in
this representation the chaotic regions are loedljzatterns of
In the following we show how the largest Lyapunoypenent rather characteristic shapes. They only exist abavine
(LLE) depends on two of the relevant parameterpikgethe h =ch,(c=1) and rapidly fade away for higher fields as can
others at fixed values. These 2-dimensional maps &e seen in frame (b), which is a zoom of the upphite
calculated with different, but high resolutions,igfhare given rectangular area in frame (a): The intensity of HeE
in the respective figure captions. decreases and the size of the patterns reducesclduic
First, Fig.(1) (a) shows the color-coded LLE asuaction of areas are not compact, but inside they contain szamith
amplitudeh, and frequencyQ of the time dependent externalregular behavior, cf. frame (c), which zoom the éoveft
field. Frame (b) is a zoom of the area denotedhgywhite white rectangular area of frame (a).
rectangle in frame (a) and frame (c) zooms the avhifNote that, there are other methods of quantifying hon-
rectangular area of frame (b). There are no chaetjenes for periodic behavior of a dynamical system [3,4,7,1%%. an
forcing frequencies well above the natural or@> 5.5, example, we calculate bifurcation diagrams usingoincaré
indicating that chaos occurs only in the vicinity the SEction technique [4] of the magnetization angigsen by

resonance condition. Obviously, chaos requiresfiicmtly ™M = (cospsing ,sip si® ,cad). In these diagramswhen
large value of the field amplitudel, > 0.2, cf. frame(b). there is a continuum of points in the variable fehavior is

Interestingly, inside the larger chaotic areas cae observe guasi-periodic or chaotidhe frame (a) of Fig.(3) shows the
small chaos-free areas exhibiting rather complexndary diagram of § and ¢ as a functionh, at time interval
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multiplesof 277/Q , for h =6.5 corresponding to a horizontal acknowledges _financial support by Spanish Ministf
line in Fig.(2a). We can observe multiple transiticoetween Science and Technology under project FIS2008-08335-

regular to non-periodic regimes and for large figld system
become regular. The frame (b) and (c) of Fig.(3veh 3D
phase portraits for two fixed values bf, extracted form the
bifurcation diagrams, in the chaotic and regulagime,
respectively.
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Fig 4: (Color online) The largest Lyapunov expon@ritE) as a function of
h and g at Q =25, B=4.8and ;7 =0.02. The resolutions areAh =10

and A =5x10°.

Finally, Fig.(4) shows the color-coded LLE as adiion of
the forcing field amplitudeh, and the anisotropy constagt.

Again, there is a complicated pattern of chaotigiaes that
contain smaller regular regions and whose bounslasi®e
rather fuzzy. The minimum field necessary to obtelraos
increases with decreasing anisotropy. However etlaee still
huge areas of regular dynamics even for intermedialds
irrespective of the anisotropy constant indicatithgit the
anisotropy is a necessary, but by far not a sefficcondition
for chaos occurrence.

IV. SUMMARY
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