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We consider a thin fluid layer of infinite horizontal extent, confined below by a rigid plane and
open above to the ambient air, with surface tension linearly depending on the temperature. The
Auid is heated from below. First we obtain the weakly nonlinear amplitude equations in specific
spatial directions. The procedure yields a set of generalized Ginzburg-Landau equations. Then
we proceed to the numerical exploration of the solutions of these equations in finite geometry,
hence to the selection of cells as a result of competition between the possible different modes

of convection.

1. Introduction

The onset of motion in heated fluid layers with a
free upper surface has been extensively studied since
the original experiments by Henri Bénard (1900]. A
comprehensive introduction to Bénard convection 18
given in [Normand et al., 1977, Velarde & Normand,
1980; Koschmieder, 1993]. Depending on the depth
of the layer one distinguishes two basic mechanisms
of instability. In sufficiently deep cells, or in cells
in which the fluid is confined between rigid hori-
zontal plates, the convective motion settles when
buoyancy forces overcome viscous forces (Rayleigh-
Bénard problem). Alternatively, in su iciently shal-
low layers with an open surface, inhomogeneities
in the surface-tension [Block, 1956; Pearson, 1958|
are responsible for the onset of motion (Bénard-
Marangoni problem). In both cases, the character-
istic wavelength of the convective structure may be
comparable to the depth of the cell or much larger,
depending on whether the horizontal boundaries are
good thermal conductors or not.

Despite the relative simplicity of the system
and of the considerable effort devoted to under-
standing the observed phenomena, several questions
remain open. In this work we address one of them,
namely the question of pattern formation induced
by surface-tension gradients in a finite system.

Specifically, in the case of surface tension
gradient-driven convection, the system evolves
mostly towards a hexagonal structure. The evolu-
tion of the selected pattern is described by a (1+2)D
set of amplitude equations that we have derived
[Bragard & Velarde, 1995]. The paper is organized
as follows: in Sec. 2 we sketch the derivation of the
amplitude equations, in Sec. 3 we present a few re-
sults of the integration of these equations, and in
Sec. 4 we provide some conclusions.

2. Amplitude Equations

Close to the instability threshold the system
may be described by amplitude equations having
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a universal form [Landau, 1944; Stuart, 1958:
Scanlon & Segel, 1967; Newell & Whitehead, 1969;
Cross & Hohenberg, 1993]. The coefficients of these
amplitude equations are specific to each instability,
they depend on the dimensionless numbers of the
problem containing fluid properties, boundary con-
ditions and external forcing. Here we consider three
dimensionless numbers:

% do dAT hd
Pr=—; Ma= . B = — 1
' K ! ol kn T (1)

where v and & are, the kinematic and thermal dif-
fusivity, respectively; o is the surface tension, d is
the thickness of the layer, AT is the temperature
difference between the top free surface and bottom
plate, 7 is the dynamic viscosity, h is the thermal
surface conductance and k is the thermal conduc-
tivity of the fluid layer. The Marangoni number Ma
s the ratio between the destabilizing force, e.g. the
surface tension gradient and the stabilizing ones as-
sociated with thermal and viscous diffusion. The
Prandtl number is an intrinsic characteristic of the
fluid. The Biot number is a characteristic of the
heat transfer at the boundaries, an infinite value of
the Biot number corresponds to a perfectly conduct-
ing boundary, a zero value corresponds to a poorly
conducting surface.

The equations that govern the system are the
standard incompressible fluid mechanics equations:
Navier—Stokes, continuity and energy equations that
we take in dimensionless form:

5 |
81: F (v - V)v = Pr(—=Vp+ Av)
Vev=0 (2)
(?T Fv - VT = AT
ot |

with the following boundary conditions: At the lower
uniformly heated rigid plate:

v =0

o (3)
0,17 — Bi1T = constant

and at the top undeformable free surface:

w =1
00 = nod,u
Oyo = n0,v

0.7 + BiT = constant .

We shall restrict consideration to the Boussinesq
approximation [Pérez-Cordén & Velarde, 1975:

Velarde & Pérez-Corddn, 1976].
To study the transition between the constant

motionless conductive state and the convective
state, and the dynamics of the structures that ap-
pear in this convective state, we use a multiple scale
perturbation theory in the vicinity of the onset of
the convection. We define a small parameter in or-
der to separate the fast variables that describe the
instability and the slow ones that are useful to de-
scribe the pattern dynamics. The details of the cal-
culation are given elsewhere [Bragard & Velarde,
1995]. The temperature dependence reads as:

T =T(2)[A1(X, Y, 7)exp(ik™® . r)
+Ag exp(ik‘® . r)
+Az exp(ik® . r) 4 c.c] (4)

where k@ denotes three linearly critical wave vec-
tors oriented at 120 degrees in the horizontal plane.
T'he amplitude equations in the horizontal plane are

(e.g. for A7):
a0t A; = aAA] + o A5 A
—cs A1|A1]* — e A1 (|As|? +| As)?)
+ag(k® - V)2 A1 4461 (kDY) - V) (A435A4%)
+if2[A5 (k) - V) A5+ AY(k® . V) A3]
FiBs[A5(K® - V,) A3+ A5(k® . V) A3]
(5)

where

a; = 0.0038

o = 0.05 4+ 0.013 Pr~*

ag = 0.0203 — 0.0046 Pr~!
aes = 0.016 + 0.0049 Pr—! +0.00077 Pr—?

aes = 0.0217 + 0.003 Pr—! +0.0018 Pr—2
ag = 0.021

B = 0.016 — 0.0041 Pr~1

A = Ma — Ma,

Similar equations appear for A; and Az (with cir-
cular permutation of the indices). We give the nu-
merical value of the coefficient in the specific case of
a poor conducting upper surface and good conduct-
ing lower plate. Other thermal conditions at the top
and bottom change the numerical values of the coef-
ficients. These equations are generalized Ginzburg-
Landau equations with genuinely new advective



Table 1. Stable patterns according to the bifur-
cation parameter A.

A = Ma — Ma. Stable Configurations
A < A, Conductive state
A <AKDO Conductive state, Hexagons
0 <A< A, Hexagons
Al <A< A Hexagons, Rolls
A > A Rolls

terms with 3 coefficients. For these equations there
is no Lyapunov functional hence for some value of
the f we may observe non-monotonic behavior. In
the numerical simulations we shall concentrate
on the two parameters A and 8 which are respec-
tively the distance to the threshold and the coeffi-
cient of the advective terms.

The analytical study of Eq. (5) without spatial
terms in infinite horizontal extent is known from
Busse [1967]. The results of linear stability analysis
of rolls and hexagons are summarized in Table 1.

The values of the constant for Pr — oo are

HE

A, = E ~ —0.456
‘ doy(aes + 20)
ctgcecs

&1 — 5 ~ 53.4

@E(ﬂcs — C]fcz')

2

(20,5 + Qg

Ay = g(20cs ‘“’2,) ~ 179.2

89, (ﬂfcs — ﬂfci)

As a consequence, two hysteresis cycles can be dis-
tinguished [Pérez-Garcia et al., 1990]. One occurs
between the conducting state and the hexagonal
pattern, in the interval [A., 0] and the second one
between hexagons and rolls in the interval [A, As].
The existence of the first hysteretic loop has been
observed in experiments [Koschmieder, 1993]. To
our knowledge the transition from hexagons to rolls
has not yet received experimental support. Busse’s
formule for space independent amplitude equations
in infinite geometry provide a starting point for
the exploration of the complete equation in finite
geometry.

3. Numerical Results

In this section we present the results of five nu-
merical simulations of the amplitude equations (5)
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in a square geometry, starting from random ini-
tial conditions (Cases [-IV) and starting with rolls
(Case V). We solve the equations by means of
a finite difference method using a semi-implicit
splitting-type scheme.

A major question concerning the numerical pro-
cedure is to know when the system attains a steady
state. We have used the method of Christov et al.
[1995] based on the evaluation of a norm, which
measures the rate of change of the distance between
two successive states of the system, due to both
the saturation and to the phase evolution of the

pattern. Further details on this norm are given in
Pontes et al. [1995].

Case I corresponds to A = 50 and = 0.1 (see
Fig. 1). The system evolves to a stationary hexag-
onal pattern. The large value of 3 does not affect
the pattern much. Simulations with § = 0 confirm
that an increase of 3 only slightly distorts the pat-
tern. Thus the advective terms in the amplitude
equations do not play an important role in the case
of an hexagonal structure. The fluid rises in the
center of the cells in accordance with experimen-
tal observations [Koschmieder, 1993]. No detects
are observed. The time evolution shown in Fig. 3
indicates how the system evolves to the stationary
state.

Case ITis for A = 75 and 8 = 0 (see Fig. 2). For
this value of A, the system is in the bistable region.
Both hexagons and rolls are possible. The simula-
tion displays the coexistence of these two structures.
Figure 3 confirms the convergence to a steady state.

Case IIT was run with A = 150 and 8 = 0
(see Fig. 4). We still increase the value of the bi-
furcation parameter A. For this value the rolls are
the preferred structure. We reached this stationary
state asymptotically (see Fig. 7). At the boundary,
the rolls tend to be perpendicular to the sidewalls

[Cross, 1982].

Case IV was run with A = 150 and 8 = 0.1 (see
Fig. 5). Increasing the parameter 3 to 0.02 we have
not observed any changes with respect to Case III.
For 8 = 0.1, Fig. 7 shows that the system does
not reach a steady state. Beside the roll structure,
defects appear moving through the system.

Case V was run with A = 150 and 8 = 0.1
(see Fig. 6). Here a new simulation with the same
parameter values is done but with rolls plus some
superposed noise as the initial condition. First, the
structure evolves to rolls without defects, but as
time goes on the rolls start to bend and we
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observe an instability. This “secondary” instabil-
ity looks like the Zig-Zag instability [Manneville,
1990]. Again, the system does not show evolution
to a steady state.
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Fig. 3. L; x t curves of the evolution sequences for the

cases (I, II).
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4. Conclusions and Perspectives

Using amplitude equations, we have addressed the
question of pattern formation in the Bénard-
Marangoni convection. Past the onset of instabil-
ity the hexagonal structure with fluid rising in the
center of the cells is selected in agreement with ex-
periment [Koschmieder, 1993|. For larger super-
critical values, we numerically observed a transition
between hexagons and rolls, a result also obtained
analytically.

We have also studied the role of the new ad-
vective terms 3 in Eq. (5) in the non-potential evo-
lution of the patterns. Specifically, we have shown
that these terms do not affect much the hexagons
but destabilize the roll pattern.

Recent numerical experiments done by Thess &
Orzag [1995] do not support the transition
hexagons-rolls but rather show an increase in the
level of defects in the hexagonal structure. The fact
that we have selected only three modes in the de-
scription of the pattern does not allow to observe
these patterns with high level of defects.
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