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Connexins are specialized ionic channels that control the action potential propagation between
cardiac myocytes. In this paper, we study the connexin dynamics in a one-dimensional model of
cardiac tissue. We show that the connexin dynamics may lead to a spatial organization of the
gap junction conductance. In the numerical simulations presented in this paper we have found
two different regimes for the spatial organization of the conductances: (a) a spatially uniform
conductance; (b) a spatially complex pattern of local values of high and low conductances. In
addition, we have observed that, locally, the two final states are limit cycles with a period equal
to the period associated with the external excitation of the tissue strand. The conductance
dispersion usually takes place on a very large time scale, i.e. thousands of heart beats, and on
a very short spatial scale. Due to its simplicity, the one-dimensional setting allows a detailed
study of the emerging structure and in particular very long simulations. We have studied the
transition between the two aforementioned states as a function of the gap junction conductance
characteristics. Furthermore, we have studied the effect of initially added noises on the outcome
of the system. Finally, using spatial autocorrelation functions we have characterized the spatial
dispersion in conductance values.

Keywords : Cardiac dynamics; gap junction dynamics; connexins Cx43-43; bistability; chaotic
dispersion.

1. Introduction

The description of the electrical activity in the car-
diac tissue is still a field of research in applied math-
ematics and bioengineering [Cherry et al., 2017;
Gokhale et al., 2017]. Most models describe the elec-
trical wave that travels across the cardiac tissue and
triggers the mechanical contraction of the heart.

The first generation of mathematical models for
the description of the cardiac wave propagation
uses constant values for the conductances between
adjacent myocytes as a simplified hypothesis. This
approximation resulted in a constant diffusive term
in the partial differential equation that describes
the dynamics of the transmembrane potential,

1930021-1

http://dx.doi.org/10.1142/S0218127419300210


July 29, 2019 16:9 WSPC/S0218-1274 1930021

C. Hawks et al.

i.e., classical nonlinear reaction–diffusion equation.
This equation is called the “monodomain” equation
in the cardiac modeling literature [Keener & Sneyd,
1998; Sachse, 2004].

Nowadays, more complex situations like defib-
rillation studies or local damage of the cardiac tissue
[Schulz et al., 2015] require a more accurate descrip-
tion of the spatial distribution of the conductance
between myocytes. In cardiac tissue, adjacent cells
are joined through gap junctions (Fig. 1), that allow
the transport of ions among cells, resulting in dif-
fusion of the transmembrane potential. A detailed
description of electrical wave propagation needs to
take into account the gap junction dynamics, that
has been well characterized experimentally [Vogel &
Weingart, 1998; Desplantez et al., 2004, 2007; Willy
et al., 2017; Santos-Miranda et al., 2018]. Struc-
turally, gap junctions are composed of connexin pro-
teins. In mammals, the most common type of con-
nexins in cardiac cells are the Cx43 and Cx45 (the
number in the denomination of the protein comes
associated with its molecular weight).

There is increasing evidence that alterations of
gap junction organization and connexin expression
are related to human heart disease and arrhyth-
mias [Jalife et al., 1999; Delmar & Makita, 2012;

Fig. 1. Illustration of the structure and functionality of
a gap junction (GJ) connecting electrically two cardiac
myocytes. The thickness of the bilipidic layer is of the order
of a few nanometers. The ions can flow in both directions
through the GJ. This figure has been taken from [Beutler,
2018].

Tse & Yeo, 2015; Boengler & Schulz, 2018]. In this
sense, a reduction of expression of Cx43 in ventri-
cles has been observed in patients with ischemic car-
diomyopathy and other chronic myocardial disease
states [Severs et al., 2008]. In failing hearts, one of
the consequences of the observed down-regulation
of Cx43 expression is conduction slowing [Kostin
et al., 2003; Glukhov et al., 2012]. Hypertrophic
and dilated cardiomyopathy produces also a rear-
rangement of connexin Cx43, leading to a heteroge-
neous connexin redistribution and down-regulation
expression resulting in conduction defects [Gut-
stein et al., 2001]. Mutations that produce changes
in connexin phosphorylation affect also the func-
tionality of channels and the conductance of gap
junctions [Imanaga, 2010]. Phosphorylation of Cx43
may increase the size of gap junctions, promoting
cell to cell communication [Dunn & Lampe, 2014].
An experimental study by Beardslee et al. [2000] has
put forward the connection between ischemic hearts
and the remodeling of the cardiac electrical conduc-
tance through the dephosphorylation of ventricular
Cx43. Furthermore, mutations of connexin proteins
have been implicated in the pathogenesis of sudden
infant death syndrome [Van Norstrand et al., 2012]
and in atrial fibrillation [Noureldin et al., 2018].
Consequently, pathological remodeling of connex-
ins contributes to arrhythmogenic substrates and
development of reentrant arrhythmias.

Due to its physiological relevance, the effect of
intercellular coupling has long been addressed com-
putationally. A modeling study combining reduced
membrane excitability and reduced gap junction
coupling by Shaw and Rudy [1997] concluded that
paradoxically a decreased gap junction coupling may
increase the propagation safety factor. The inclu-
sion of the gap junction dynamics has been stud-
ied in a modeling paper by Hand and Griffith [2010]
that applies a multiscale approach combining
microstructure details and macroscopic tissue char-
acteristics. In the same line of ideas, Costa et al.
[2016] developed a semi-continuous model for the
description of the electrical propagation in the car-
diac tissue, including the gap junction dynamics. A
different modeling perspective consists in consider-
ing the heart as a network of different types of cells
which are electrotonically coupled via gap junctional
conductance [Qu, 2014]. In normal ventricular tis-
sue, a myocyte is coupled to about 11 myocytes,
which is reduced to about six in ischemic tissue
[Peters & Wit, 1998]. The study of the topology of

1930021-2



July 29, 2019 16:9 WSPC/S0218-1274 1930021

Gap Junction Dynamics Induces Localized Conductance Bistability in Cardiac Tissue

those networks for healthy and diseased individuals
is still an active field of research. Recently, Canta-
lapiedra et al. [2014] developed a model combining a
membrane description of the cardiac myocytes sup-
plemented with a local gap junction dynamics to
study gap junction dysregulations.

The purpose of this paper is to show that the
inclusion of the gap junction dynamics can lead to
strong variations in the values of the conductances.
We will show that, on long time scales, it can lead
to a drastic decrease in conductance values and,
interestingly, to nontrivial spatial distributions of
the electrical conductances in the cardiac tissue. In
these situations, the approximation of a constant,
homogeneous conductance, usually considered in
modeling studies of cardiac wave propagation, leads
to invalid results. The organization of the paper is
as follows: In Sec. 2, we provide the model descrip-
tion. The simulations of the model are presented
and analyzed in Sec. 3. In particular, we study in
detail the spatial distribution found for the conduc-
tances. Finally, discussions of the limitations and
the conclusions are given in Sec. 4.

2. Model Equations

A previous study [Hawks et al., 2015] already
showed that the difference between a monodomain
and a bidomain formulation [Keener & Sneyd, 1998]
was negligible to study the long term effect of the
variation of the tissue conductance induced by the
GJ dynamics. Based on that, we will use a mon-
odomain formulation of electrical wave propagation,
and present here the ingredients of the model used
in the current study.

2.1. Monodomain formalism

Let us first remember the monodomain equations
[Keener & Sneyd, 1998; Sachse, 2004]:

∂s

∂t
= f(V, s), (1)

∂V

∂t
+

Im + Iext

C = ∇ · (D∇V ), (2)

where s is the dynamical state vector that con-
tains all the variables involved in the local descrip-
tion of the ionic currents crossing the myocyte
membrane. The vector function f(V, s) in Eq. (1)
is a highly nonlinear phenomenological function
that is measured through biophysical cell exper-
iments [Keener & Sneyd, 1998]. V denotes the

transmembrane potential (units are in mV), Im is
the sum of the ionic currents (units are µA/cm2)
and C is the membrane capacitance per unit area
(≈ 1µF/cm2). The term Iext allows for the intro-
duction of an external current as it happens during
an external excitation of the cardiac tissue. The tis-
sue diffusion D = σ/(βC) is the ratio between the
electrical conductivity σ (units are mS/cm) and the
product (C β) where the latter denotes the aver-
age surface to volume ratio of the myocyte (units
are cm−1). Typical values in mammalian cells lead
to a diffusion value of approximately D ≈ 1.5 ·
10−3 cm2/ms [Aguel et al., 2003]. Note that the time
scales associated with Eqs. (1) and (2) vary from
0.1 ms up to 1 s and even higher. Consequently,
the differential equations (1)–(2) are stiff and their
numerical integrations are challenging.

2.2. Gap junction dynamics

When one includes the GJ dynamics, the assump-
tion of constant homogeneous conductivity no
longer holds and instead we have to write that
D = D(x, t). The coupling between the GJ dynam-
ics and the action potential propagation may lead
to some interesting dynamical bistability [Donnell
et al., 2009]. Here, the dynamics of the gap junc-
tions is modeled as proposed in the papers of Lin
et al. [2003] and Desplantez et al. [2004]. The rela-
tion between the conductance and the GJ dynami-
cal function g is simply written as follows:

D(x, t) = Dgx(t), (3)

where D is the fixed nominal value for the intra-
cellular conductivity and D = 1.5 · 10−3 cm2/ms for
a healthy tissue.

To simplify the problem we will work in a one-
dimensional spatial system. Therefore, when we dis-
cretize space in order to solve the model [Eqs. (1)
and (2)], the index number i corresponds to the
cell number i on the cable. The index number i also
corresponds to the gap junction gi situated between
cell number i − 1 and cell number i. At each loca-
tion, we need to solve the gap junction dynamics,
which is governed by the following set of differential
equations:

dgi

dt
=

gi,ss(∆φ) − gi

τg(∆φ)
, (4)

where ∆φ = φ(i)−φ(i−1) is the difference in intra-
cellular electrical potential between the two adja-
cent cells of gi. The steady state value in Eq. (4)
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Table 1. Values for the Gap Junction dynamics. Here, the
parameter values are indicated for (∆φ < 0/∆φ ≥ 0).

Connexin Type V1/2 (mV) gi,min z

Cx43 43 −60.8/62.9 0.26/0.25 −3.4/2.9
Cx43 45 −11.7/134.4 0.05/0.05 −2.1/0.6
Cx45 43 134.4/−11.7 0.05/0.05 0.6/−2.1

depends on the local instantaneous ∆φ following
this equation:

gi,ss =
gi,max − gi,min

1 + exp[A(∆φ − V1/2)]
+ gi,min (5)

and the time scale in Eq. (4) is given by τg =
Aτ exp[−Bτ |∆φ|]. The parameter values entering
Eqs. (4) and (5) are taken from the works of Lin
et al. [2003] and Desplantez et al. [2004]. They are
given in Table 1.

We also have the following relations for the
parameter values: A = z/26.714 (mV)−1; Aτ =
109 900 (ms); Bτ = 1/11.8 (mV)−1; gi,max(∆φ =
0) = 1. The dependence of gi,ss as a function of
∆φ is displayed in Fig. 2. In this study, we will use
only the symmetric GJ of type (Cx43 43) described
above.

We emphasize that because we are using a mon-
odomain formulation, the computation of the term
∆φ = φ(i) − φ(i − 1) reduces to ∆V = V (i) −
V (i − 1) as a result of assuming that the extra-
cellular electrical potential is constant throughout
the domain.
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Fig. 2. Steady state values of the gap junction gi,ss [see
Eq. (4)] as a function of the difference in intra-cellular elec-
trical potential between adjacent cells, ∆φ, for the differ-
ent types of gap junctions. The labels indicate the connexin
types that conform with different GJ. The horizontal line
(green) represents the case where the conductance is assumed
constant.

2.3. Transmembrane model
selection

In order to describe the electrical propagation of
the action potentials through our system we need
to select an adequate description of the transmem-
brane currents. Since the 1960s, many differential-
equations-based models that describe the kinetics of
the cell membrane have been developed [Keener &
Sneyd, 1998; Sachse, 2004]. In some cases, models
have evolved to become quite complex by repre-
senting cellular processes in detail [Grandi et al.,
2010]. Other models, e.g. the three-variable Fenton
and Karma model [1998], represent quite faithfully
the propagation of the action potential without the
numerical burden associated with the large num-
bers of variables in the more complex models. In
2010, Cantalapiedra et al. [2010, 2014] developed
a generic five-variable model containing a specific
formulation for the transient outward K+ current,
which is important in describing action potentials
associated with the Brugada syndrome. In this
paper, we use the Cantalapiedra et al. model [2010,
2014] with the model parameter fitted to describe
human ventricular myocytes [Ten Tusscher et al.,
2004].

2.4. Numerical methods

A one-dimensional strand of a ventricular cardiac
tissue was simulated using Eqs. (1)–(4). Time and
space were discretized using δx = 0.01 cm and
δt = 0.01 ms. We use a simple Euler explicit scheme
to integrate the set of Eqs. (1)–(4). In particular,
Eq. (2) is discretized as follows:

V (n+1)(i)

= V (n)(i) + D
δt

δx2
{g(n)

i+1[V
(n)(i + 1) − V (n)(i)]

− g
(n)
i [V (n)(i)− V (n)(i − 1)]}− δt

I
(n)
m + I

(n)
ext

C ,

(6)

where the superscript (n) refers to variables taken
at time step n. Here we consider that the size of
the myocytes is constant and corresponds to one
δx = 100µm. Therefore one GJ is always located
in between two spatial grid points, i.e. gi is the GJ
situated between cell number i − 1 and cell num-
ber i. This is the same as assuming that the cells
are isopotential and all the drop in transmembrane
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potential occurs at the gap junctions [Keener, 1991].
The discretization scheme of Eq. (6) follows from
a finite volume method and as such ensures the
current conservation up to machine precision. The
extension of the one-dimensional strand of cardiac
tissue that we have considered here was set to N =
400 cardiac myocytes. We have checked that the δt
we have chosen is sufficiently small to ensure that
the numerical results are robust and the numerical
error is less than 0.5%.

The dynamics of the GJ is studied following
the stimulation protocol as described below: We
excite periodically the strand of tissue at one end by
injecting current in order to elicit an action poten-
tial. In particular, the first seven cells of the strand
are stimulated for 1ms with an excitation current
of Iext = 0.52 µA/cm2. Following this excitation,
an action potential (AP) is elicited. Note that a
larger current would be needed to elicit an AP if
fewer cells were excited. After initiation, the AP
propagates towards the opposite end of the cardiac
strand of tissue. We repeat the stimulation peri-
odically in time. For all the simulations presented
in this paper we have fixed the excitation period
to T = 480 ms. Most of the simulations presented
in this paper require a large number of excitations
in order to display nontrivial dynamics. In some
cases we have performed simulations that required
as much as 10 000 excitations (or over 1 h) to reach
a steady state for the GJ dynamics.

3. Results of the Model

In healthy tissue, the parameters associated with
the membrane model and the connexins are such
that the conductance is nearly uniform in space and
constant in time as it has been shown previously
[Cantalapiedra et al., 2014].

In some diseased tissue, it has been observed
that the average conductance can be dramatically
reduced [Verheule & Kaese, 2013; Asimaki & Saf-
fitz, 2012] and also that the time scale associated
with the connexin is altered [Spach et al., 2000], for
instance due to drug intake [Hsieh et al., 2016], an
increase in fibrosis content [Sachse et al., 2008], tem-
perature [Santos-Miranda et al., 2018] or connexin
mutations [Noureldin et al., 2018]. In this paper,
we aim at simulating a diseased tissue and look-
ing at the effect of the connexin dynamics on the
conductance distribution. In particular, we show
that complex one-dimensional conductance struc-
tures develop upon stimulating the tissue for altered
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Fig. 3. Steady state values of the gap junction gi,ss of type
(Cx43 43) as a function of ∆φ for three different values of
FS (“Shrinking factor”): FS = 1 (blue solid line); FS = 1.9
(red dotted line); FS = 3.5 (black dashed line). For modeling
diseased tissue note that the maximum values for the gi,ss

has been reduced to 40% of their nominal values.

parameters of the model. Here we have performed
simulations with values of the conductance that are
set to a maximum of 40% of their nominal values
(gi,max(∆φ = 0) = 0.4). We have also reduced the
time scale by modifying the parameter to this new
value Bτ = 1/5 (mV)−1. A last modification to
the model was to introduce a parameter associated
with the steady state characteristics of the GJ con-
ductance (gi,ss). We have called this parameter the
shrinking factor FS which is directly related to the
width of the plateau characterizing the GJ dynam-
ics as shown in Fig. 3. Experimental evidences of
varying GJ characteristics can be found in [Bennett
et al., 1991; Bukauskas et al., 2002].

3.1. Bistability induced by the
shrinking factor FS

In this section, we explore the influence of the
shrinking factor FS on the final state of the con-
ductance. In order to do this, we set different val-
ues for FS and observe the resulting dynamics in
space-time plots (see Fig. 4). A more comprehensive
study of the bifurcation induced by the parameter
FS will follow (see Fig. 7). Figure 4 displays the
spatiotemporal dynamics of the GJ for five selected
values of the shrinking factor. In Fig. 4(a), which
corresponds to the “normal value” for the shrinking
factor, i.e. FS = 1, we observe that the dynamics
leads to a spatially uniform value for the conduc-
tance g close to the maximum value which is set
here to g ≈ 0.4. In Figs. 4(b)–4(d), we have found
out that intermediate values of FS (1 < FS < 5)
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Fig. 4. Illustrative space-time plots of the conductance g of
the symmetrical GJ Cx43 43 taken at regular time intervals
(T = 480 ms). The color code represents the local values of
the conductance (a.u.). The five different cases shown refer
to the following shrinking factors FS: (a) FS = 1.0; (b) FS =
1.44; (c) FS = 1.9; (d) FS = 3.5 and (e) FS = 20.

lead to nontrivial final spatial distribution of the
conductance values (gi). We observe alternations of
high and low values of the conductance. The density
of low conductance states increases while increasing
the value of FS. Furthermore, the pattern of alter-
nations between high and low conductances is not
regular but spatially disordered. Finally, for large
values of the FS, after a transient, we get a spatially
uniform conductance g which is now close to the
lower value of the GJ characteristics, i.e. g ≈ 0.1 as
shown in Fig. 4(e) for the parameter value FS = 20.

These preliminary results indicate that we have
found evidences for a transition induced by the
increase (or decrease) of the parameter FS. This
transition is between the upper uniform conduc-
tance g ≈ 0.4 to the lower uniform conductance
g ≈ 0.1, resembling the dynamic conductance down
regulation, recently observed in experiments [Willy
et al., 2017]. In between these two limiting cases we
observed [see Fig. 4(c)] an irregular spatial pattern
of high and low conductances where the two states
are mixed.

Let us now analyze in more detail the mixed
state that corresponds to intermediate strengths of
the shrinking factor FS. From Fig. 5, we observe
that the gap junction values bifurcate near the
400th beat and then converge to two different states
with high and low average conductance values.

At a first glance Fig. 5 may be misleading
because it seems that the two neighboring gap junc-
tions are converging to two fixed points (conduc-
tance at approximately 40% and 10% of the home-
ostatic conditions). Instead, a closer look at the
temporal dynamics as displayed in Fig. 6 shows that
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 time (# beats) 

0.1

0.2

0.3

0.4

g
i (
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)
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i=201

Fig. 5. Two horizontal cuts of Fig. 4(c) (with shrinking fac-
tor FS = 1.9) at two consecutive spatial positions correspond-
ing to grid points i = 200 and i = 201. Note that near the
400th beat, the conductance of the two neighboring gap junc-
tions starts to diverge.
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Fig. 6. Close up of the dynamics shown in Fig. 5 showing
the time evolution of the gap junctions gi and of the action
potentials Vi at the two locations (a) i = 200 and (b) i = 201.
Locally, the gap junction conductance is converging towards
one of the two periodic states: (a) the upper state or (b) the
lower state. Parameter FS is fixed as 1.9. Note that the left
vertical axis in panel (a) is shifted downward by 0.4 in order
to highlight the convergence to the upper state.

the two neighboring gap junctions are converging to
two different periodic states. In Fig. 6(a), we focus
on the upper value of the conductance close to the
value gi ≈ 0.4. In order to represent the GJ varia-
tions accurately we shift the vertical axis (gi − 0.4)
and also superimpose the plot of the membrane
action potential (AP) with its normalized scale on
the left vertical axis. In Fig. 6(b), we focus on the
lower value of the conductance close to the value
gi ≈ 0.1. Again we see that over a period, the con-
ductance of the GJ drops significantly when the AP
depolarizes and increases rather constantly for the
rest of the period. The temporal dynamics unfolds
on two time scales. One is associated with the stim-
ulation period (BCL = 480 ms) and the other one

with the membrane depolarization at a scale of the
order of 1 ms.

For a first quantitative analysis of the GJ
model, we have studied the influence of both, FS
and the initial value for the conductances gini, for
characterizing the transition between upper and
lower states of the conductance. We define an order
parameter to characterize this transition by choos-
ing the average value for the conductance 〈g〉 when
it converges to its corresponding limit cycle. In
Fig. 7, we show how 〈g〉 varies as a function of FS
for three different values of the initial conductance
in the system: gini = 0.1 (blue triangle symbols);
gini = 0.52 (red circle symbols); gini = 0.4 (green
diamond symbols). We found an excellent agree-
ment between the numerical data and their fitting
curves with hyperbolic tangent functions. This is
reminiscent of a second order phase transition. The
explicit function for the fitting is given by

〈g〉 = g + 0.5∆g tanh[w(FS∗ − FS)], (7)

where the best fit parameters and their correspond-
ing confidence intervals are given in Table 2.

From Fig. 7, we see that the transition between
the upper and lower values for the GJ conductance
depends on the initial value set in the simulation.
This will be studied in detail in Sec. 3.2.

Before investigating that, let us first explain
why the transition takes place. As shown in
Figs. 6(a) and 6(b) the connexin dynamics acts on
two time scales. During the depolarization, ∆φ is
large and negative and therefore the gi decreases
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Fig. 7. Variation of the mean value of the conductance 〈g〉
as a function of the shrinking factor FS. There are three sets
of data (and their best fitting hyperbolic tangent functions)
corresponding to three different sets of initial values for the
conductances: gini = 0.1 (blue triangles); gini = 0.25 (red
circles); gini = 0.4 (green diamonds).
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Table 2. Values for the fitting parameters associated with Eq. (7). The 95% confidence bounds are also indicated
in the table (in parentheses) as well as the adjusted R2 characterizing the goodness of the fit.

gini g ∆g w FS∗ R2

0.10 0.2496 0.2854 16.09 1.432 0.977
– (0.2422, 0.2570) (0.2693, 0.3016) (13.43, 18.75) (1.42, 1.44)

0.25 0.2492 0.2867 9.711 1.595 0.998
– (0.2473, 0.2512) (0.2828, 0.2907) (8.90, 10.52) (1.59, 1.60)

0.40 0.2597 0.3011 2.258 1.801 0.992
– (0.2538, 0.2656) (0.2861, 0.3162) (2.03, 2.486) (1.77, 1.83)

according to Eq. (4), but this decrease lasts only a
few milliseconds. For the remaining time of the exci-
tation cycle ∆φ is small and positive and gi grows
back to the maximum value (here gi ≈ 0.4). This
tug-of-war between the depolarization phase trying
to reduce gi and the repolarization phase tending
to increase gi is mediated by the shrinking factor
FS. Furthermore, since the time scale τg(∆φ) is also
dependent on ∆φ, that will confer an advantage
for the depolarization by reducing the time scale
in Eq. (4). To fully understand the transition, as
shown by the example in Fig. 4(e) for FS = 20, we
need to introduce two additional equations. First,
we will assume that in the first order approxima-
tion we have the following relation between the local
action propagation speed ci and the local value of
the conductance [Keener & Sneyd, 1998]:

ci ∝ √
gi. (8)

Secondly, we will define the “residence time” ∆̃t
which is the time for the action potential to move
from one cell to the next cell in the cable. By using
standard kinematic consideration we can write that:

∆̃ti =
δx

ci
, (9)

where δx is the distance between two cells. In writ-
ing Eq. (9) we have assumed that the action poten-
tial propagates keeping a fixed morphology. At this
point we have all the ingredients we need to explain
why the system is transitioning to the lower state
gi ≈ 0.1 when we set large values for FS. We have a
positive feedback loop that induces a decrease in gi

during the depolarization phase that is never recov-
ered during the rest of the period. In Fig. 8, we illus-
trate the three steps of this positive feedback loop:
due to Eq. (4) the gi decreases during the depo-
larization; due to Eq. (8) the local corresponding
speed is also reduced; through Eq. (9) that induces

an increase in the “residence time” ∆̃t and the loop
is closed. The gi will decrease until they reach their
minimum values gi ≈ 0.1. Note that if FS is not
as large, the recovering period is sufficient to bring
back gi to higher values close to gi ≈ 0.4, as shown
in Fig. 4(a).

A second question that immediately comes to
mind is why the intermediate values of FS give rise
to a spatially disorganized pattern of nearly alter-
nating up and down states. This can be explained by
using the fact that the action potential propagates
in a saltatory fashion. Indeed, a close look at the
simulations show that if the local speed of the AP
is reduced then at the next cell the speed is usually
much larger. Invoking again Fig. 8 a large speed will
lead to a local decrease in the “residence time” ∆̃t
and the gi will recover (through the repolarization
phase) and locally tend to the upper state gi ≈ 0.4.
These spatial alternans of up and down states in
the conductance values are therefore a direct conse-
quence of the nonlocality of the AP speed. In order
to get a better insight of the crucial influence of the
local “residence time” ∆̃ti in the outcome of the
final state of the gi, the reader may have a look at
the phase space animations at this Web page [Bra-
gard, 2018].

Fig. 8. Positive feedback loop during the depolarization
phase. The up and down arrows mean an increase or a
decrease of the indicated variable. The number next to each
arrow refers to the equation in the text that justifies the log-
ical step in the feedback loop.
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Fig. 9. Composite figure in each panel shows the spatial mean of the conductance values 〈g〉 (vertical axis) as a function of
the shrinking factor FS (horizontal axis). Two parameters are associated with each panel. The noise strength is varied with the
panel’s row: Ns = {0; 3 · 10−6; 3 · 10−4; 3 · 10−2} (top to bottom). The initial GJ value gini is varied with the panel’s column:
gini = {0.4; 0.25; 0.1} (left to right). The different colored symbols represent different random realizations of the initial added
noise. Here we have used 15 independent random realizations for each set of parameters.
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3.2. Influence of the initial
conductance to the bistable
regime

In this section, we return to the numerical simula-
tions of Eqs. (4) and we introduce a new parameter
to the problem. We will study the influence of the
noise that is added to the mean initial value of the
conductance gini. We have set g

(0)
i , with i the spatial

index associated to the GJ, as follows:

g
(0)
i = gini + Nsσu, (10)

where σu is a uniform random variable distributed
in the interval [−1; 1] and Ns is the parameter
that characterizes the noise strength in the initial
condition.

With the panels of Fig. 9 we can analyze at
a glance the effect of varying simultaneously the
three crucial parameters in the model, that is: FS,
gini and Ns. Their variations are reflected in the
variation of the order parameter characterizing the
bifurcation, i.e. the mean of the GJ conductance 〈g〉.
Note that to compute the spatial mean 〈g〉 we have
always discarded the 20 cells closer to the bound-
aries in order to avoid spurious boundary influ-
ences. In Fig. 9, we have selected three values for
the initial conductances, i.e. gini = {0.4; 0.25; 0.1}
(columns, left to right). We have studied four values
for the added noise strength, i.e. Ns = {0; 3 · 10−6;
3 · 10−4; 3 · 10−2} (rows, top to bottom). In Fig. 9,
we observe the dependence of 〈g〉 as a function of
FS in each case. Figure 9 indicates that the transi-
tion is indeed dependent on both, the initial value
gini and the noise strength Ns. For initial values of
(gini = 0.4, Ns = 3 ·10−2), (gini = 0.4, Ns = 3 ·10−4)
and (gini = 0.25, Ns = 3 · 10−2) we observe that
when FS is at the upper end of the intermediate
scale (FS > 3.7), 〈g〉 is far from the value of the
lower state 〈g〉 ≈ 0.1. This indicates that the transi-
tion is incomplete and larger values of FS are needed
to get the entire system to 〈g〉 ≈ 0.1. We conclude
that the transition is incomplete when both the
added noise and the initial values are large.

3.3. Values of the spatial
auto-correlation function
for the bistable regime

As illustrated by Fig. 4(c), intermediate values of
FS lead to an irregular spatial pattern of the con-
ductance values. In this section, we will quantitati-
vely characterize this irregular alternation between

low and high conductances. The irregularity will be
described in terms of the auto-correlation function.
The auto-correlation function C(ζ) is a tool that
characterizes the degree of similarity of a signal
with the same signal shifted by a spatial lag usu-
ally denoted by ζ [Kantz et al., 1998]. The correla-
tion function C is normalized by the variance such
that C(ζ = 0) = 1 and it takes values in the range
between −1 and 1 [Kantz et al., 1998]. A value close
to 1 indicates a strongly correlated signal and a
value close to −1 indicates a strong anti-correlation.
Here we must stress that we have used the corre-
lation function in order to get some hints about
the typical length scales involved after the system
equilibrates towards a quasi-steady state. In case
of essentially binary spatial states, autocorrelation
function and several information theoretic measures
such as mutual information lead to results that are
qualitatively identical [Voss et al., 1998]. Here the
spatial lag is measured as the number of cells that
separates the original and the shifted signal. This
implies that ζ = 1 is the lag between two adjacent
cells in the cable. For the simulations presented in
Fig. 9 the spatial auto-correlation function is com-
puted at the final stage of the simulations. Figure 10
displays examples of auto-correlation functions for
three sets of parameters. The blue line corresponds
to parameters (FS; gini;Ns) = (1.55; 0.1; 0). Its slow
decay indicates that the signal is highly correlated
in space. Indeed, the conductance values are almost
constant in space.
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Fig. 10. Three examples of the spatial auto-correlation func-
tion of the spatial gap junction signal (i.e. the conductance
values of the cable) taken at the end of the simulation (after
2000 beats). The three cases shown correspond to the param-
eters: gini = 0.1; Ns = 0 (blue line); gini = 0.25; Ns = 3 ·10−6

(red line); gini = 0.4; Ns = 3 · 10−2 (gray line). Note that
we have fixed the shrinking factor to FS = 1.55 in all three
cases.
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Fig. 11. Composite figure in each panel shows lag one C(ζ = 1) (blue circles) and lag two C(ζ = 2) (red squares) values
(vertical axis) of the spatial auto-correlation function for the conductance vector gi as a function of the shrinking factor FS
(horizontal axis). Two parameters are associated with each panel. The noise strength is varied with the panel’s row: Ns =
{0; 3 ·10−6; 3 ·10−4 ; 3 ·10−2} (top to bottom). The initial GJ value gini is varied with the panel’s column: gini = {0.4; 0.25; 0.1}
(left to right). Here we show the average values (symbols) plus/minus the standard deviations (error bars) based on 15
independent random realizations of the initial added noise.
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In the specific case considered here, the sig-
nal (i.e. the conductance values of the cable) has
essentially two different values. This allows a prob-
abilistic interpretation of the correlation function.
If its value is positive (for a specific lag) this means
that there is an enlarged probability (compared to
the average probability of that conductance) that
the lagged conductance has the same value as the
considered one. The higher the value of the cor-
relation function the more likely it is that the two
conductances coincide. In case of the maximum pos-
sible value (C(ζ) = 1) this probability is equal to
1. However, if the value of the correlation function
is negative the lagged conductance is more likely to
have the alternative value of conductance. For many
parameters of the model we observe that C(1) < 0
and C(2) > 0. This indicates a highly fluctuating
behavior of the conductance (sawtooth pattern). A
more negative value of the correlation function at
C(1) indicates a more regular alternating pattern.

The examination of few examples of auto-
correlation functions (presented in Fig. 10) indi-
cates that for the purpose of the present analysis we
can restrict the study of the auto-correlation func-
tions to the values given at lag one C(ζ = 1) and lag
two C(ζ = 2). Figure 11 reports these values for the
same set of model parameters used in Fig. 9. The
value of the correlation function at ζ = 1 is pre-
sented as blue circles and for ζ = 2 as red squares.
In case of (almost) constant conductances, both val-
ues approach 1. This corresponds to the blue curve
in Fig. 10. For the mixed state, we find both values
smaller than 1. In most cases we find C(1) < 0 and
C(2) > 0, which stands for the presence of a saw-
tooth pattern (see also the red curve in Fig. 10).
The higher the absolute difference between C(1)
and C(2) the better is the alternans pattern. This
oscillating behavior is thus found for large values
of Gini and for high initial noise strengths. For a
small part of the parameter space both values of
the autocorrelation function are negative. Here we
expect the conductance to vary upon a larger spa-
tial scale.

4. Conclusions

This paper has presented simulations of a model
of cardiac tissue that includes the dynamics of the
connexins in the gap junctions separating the car-
diac myocytes. Previous studies have shown that in

the normal (healthy) regime the conductance value
remains almost constant, with very small variations
during a stimulation. Here we have set the model
parameters in a diseased state by modifying the
model in three steps: (a) an overall reduction of the
conductance (mimicking an ischemic tissue); (b) a
reduction of the upper plateau of the connexin char-
acteristics (quantified here by the shrinking factor
FS); (c) a modification of the time scale associ-
ated with the connexin dynamics. All these mod-
ifications can be somewhat physiologically justified
but are rarely present at once in an experiment.
Our simulations have revealed an interesting bifur-
cation between high and low level of conductance
mediated by the parameter FS, resulting in dynamic
down regulation of gap junction conductance [Willy
et al., 2017]. Furthermore, the spatial distribution
during the transition is not uniform but exhibits a
very highly alternating dynamics. We have quan-
tified the observed transition through several indi-
cators as the mean conductance (order parameter)
and the spatial auto-correlation function (similar to
a structure function).

The presented study is based on some sim-
plifications. The corresponding limitations will be
addressed in future works. The cardiac tissue is cer-
tainly not one-dimensional and one has to adapt
the model to a system with higher spatial dimen-
sion. The coupling between the cardiomyocytes by
gap junctions should be modeled in a more com-
plex way such that on average each cardiomyocyte
is coupled to 11 others. Of particular interest would
be the study of the spiral wave stability in a system
with included connexin dynamics. Furthermore, the
described bifurcation should be analytically tracked
down, by using tools from bifurcation analysis.
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