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a b s t r a c t

In magnetic fluids the viscosity can depend on an external magnetic field. We theoretically investigate
the influence of this magneto-viscous effect on the thermal convection thresholds for viscoelastic fer-
rofluids, which are described by a linear Oldroyd model. Such a system is influenced by a static magnetic
field not only via the Kelvin force, but also through the magneto-viscous effect. In particular, we find that
these two contributions compete oppositely when the threshold for the oscillatory instability is consid-
ered. While the Kelvin force tends to decrease the critical Rayleigh number, the magneto-viscous effect
increases it. The critical properties at the onset of the oscillatory instability are discussed as a function
of the viscoelastic parameters, the external field strength, and the magneto-viscous coefficient. The tran-
sition between the stationary and the oscillatory instability is only slightly affected by the magneto-
viscous effect. Examples for codimension-2 lines are given.

� 2017 Elsevier B.V. All rights reserved.
1. Introduction

The purpose of the present article is to analyze the influence of a
magnetic field dependence of the viscosity on the convective
threshold of viscoelastic magnetic fluids. As model systems we
consider ferrofluids [1], suspensions of ferromagnetic particles in
a carrier liquid, in the coarse-grained approximation, where parti-
cle diffusion and thermodiffusion are neglected. The magnetic fluid
properties can then be modeled as electrically nonconducting
superparamagnets [2]. Such suspensions are often slightly visco-
elastic, which we describe by a linear Oldroyd model that contains
relaxation of the stress and retardation of the ”strain rate”. The use
of such models is rather popular, since viscoelasticity occurs in the
form of a pseudo-constitutive equation and the structure of the
hydrodynamic equations remains unchanged. The more physical
description, suitable to generalizations to more complicated sys-
tems or to the nonlinear domain, introduces the elastic free energy
in terms of the strain tensor, which constitutes an additional
hydrodynamic degree of freedom. The relaxation of the latter
describes viscoelasticity as transient elasticity. In the linear
domain, however, both types of descriptions are basically
equivalent.

For magnetic suspensions, in particular highly concentrated
ones, the visco-elastic properties can be magnetic-field dependent.
In this study, however, we concentrate on the magneto-viscous
effect, i.e. the magnetic field dependence of the viscosity [3]. The
maximum increase of the viscosity that can be obtained is about
30%. Although this looks like a small effect, its influence on the
bifurcation behavior can be large, since this non-Boussinesq contri-
bution breaks some symmetries of the underlying hydrodynamic
equations. In addition, it constitutes a magnetic field influence
directly on the (dissipative) dynamics, in contrast to the more
familiar magnetic Kelvin force that acts on the static properties.
The magneto-viscous effect has been experimentally measured in
different types of magnetic fluids [4–8]. For instance, the technique
of small angle scattering has been employed in the case of
magnetite-base ferrofluids leading to a microscopic explanation
[8]. In addition, this effect can have technological applications in
pipe systems, dynamic sealing, as well as in servo-rheological
devices [9]. Furthermore, theoretical descriptions of the field-
dependence of the viscosity have been given using a polydisperse
statistical mechanical approach [10,11] as well as a continuous
hydrodynamic one [12].
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We will discuss the linear stability of stationary and oscillatory
instabilities driven by an applied temperature gradient and an
applied magnetic field. We deal with the case of realistic boundary
conditions, and we numerically solve the dynamic equations using
a collocation spectral method in order to determine the eigenfunc-
tions and eigenvalues and consequently the convective thresholds.
The paper is organized as follows: In Section 2, the basic hydrody-
namic equations for viscoelastic magnetic fluid convection are pre-
sented. In Section 3 the linear stability analysis of the conduction
state is performed. Finally, conclusions are presented in Section 4.

2. Basic equations

We consider a layer of thickness d of viscoelastic magnetic fluid
in a vertical (z direction) temperature gradient, b ¼ DT=d, antipar-
allel to the gravitational field (strength g). An external magnetic
field H0 is assumed along the vertical direction. Within the Boussi-
nesq approximation the fluid is incompressible (divv ¼ 0) and the
density q ¼ q0 is constant, except for the buoyancy force, where a
linear dependence on the temperature T is assumed

q ¼ q0ð1þ aT dTÞ ð1Þ
neglecting magnetic buoyancy, where aT is thermal expansion coef-
ficient. Here, we consider that these constants take the values
q0 ¼ 103 kg/m3 and aT ¼ 10�3 1/K [1]. The magnetization is treated
statically and does not have its own dynamics. In particular, in the
magnetization M thermal and nonlinear magnetic field effects are
taken into account [16]

dM ¼ v0 dH þ H0 vT dT þ vHH0 � dH
� �

; ð2Þ
where fv0;vT ;vHg are the respective susceptibilities for which we

take the values f1:9;5� 10�2 1/K, 10�8 m2/A2}. Here, we describe
viscoelasticity by the well-known linear Oldroyd model

ð1þ k1@tÞsij ¼ 2meff ð1þ k2@tÞAij; ð3Þ
relating the stress sij and its relaxation (k1) with the strain rate
Aij ¼ ð1=2Þðrjv i þriv jÞ and its retardation (k2). The effective vis-
cosity meff ¼ m1ðk1=k2Þ is different from the Newtonian viscosity m1.
Describing linear viscoelasticity by a relaxing strain field [17–19]
and a finite elastic (plateau) modulus K1, one finds K1 ¼
2m1ð1=k2 � 1=k1Þ. Since K1 > 0 and m1 > 0 for thermodynamic rea-
sons, this implies the restriction k1 > k2 on the Oldroyd model
and shows that the limit k1 – 0 and k2 ! 0 (often referred to as
the Maxwell model) is ill-defined, since it would imply a diverging
elastic modulus. Using nonlinear viscoelasticity (for an application
to thermal convection cf. [20] and to general flow situations cf.
[21,22]) one can show [23] that many (nonlinear) phenomenologi-
cal models have similar problems and restrictions when thermody-
namics is applied.

The magneto-viscous effect [3] shows up in the viscosity meff ,
which is not constant, since it depends on the magnetic field

meff ¼ m0ð1þ gH2Þ ð4Þ
with m0 the (effective) viscosity at zero field, and with a positive
magneto-viscous coefficient g. The range for g will be
(10�11—10�7) m2/A2. At least for small fields this form is required
by symmetry. Indeed, measurements on dilute ferrofluids confirm
this field dependence for up to field strengths of H � 10 kA/m. Gen-
erally, the viscosity is a nonlinear function of the magnetic field
amplitude [3,6–8], but the linear approximation is used frequently
in theoretical works [13–15]. For very high fields the influence of
the magnetic field saturates [3]. In the case of magneto-rheological
fluids not only the effective viscosity, but also visco-elasticity is dra-
matically increased by an external field, and qualitatively new
effects, like yield stress and thixotropy arise. Those effects will not
be considered here. The remaining part of the hydrodynamics is that
of an incompressible superparamagnet and has been given and
applied to thermal convection previously [16,24–27]. It is well
known that such system has a quiescent, flow free ground state that
is purely heat conducting

vcon ¼0 ð5Þ
Tcon ¼T0 � bz ð6Þ
Hcon

z ¼H0ð1þ nbzÞ ð7Þ

with n ¼ vT=ð1þ v0 þ vHH
2
0Þ. The inhomogeneity in Eq. (7) is due to

the magnetic properties of the fluid and follows from the general
magnetostatic Maxwell continuity conditions across the horizontal
boundaries, H? ¼ Hext

? and Bz ¼ Bext
z for the internal and external

fields.
For the deviations from this ground state, v i; h ¼ T � Tcon, and

the magnetic potential / with H ¼ H0 �r/, linear dynamic equa-
tions have been previously derived with the result (in dimension-
less form) [24–26]

riv i ¼ 0 ð8Þ

1
P
@tv i ¼ �ripeff þrjsij þ dizRa hþM1ðh� @z/Þ½ � ð9Þ

@th ¼ wþr2h ð10Þ

@zh ¼ ð@2
zz þM3r2

?Þ/ ð11Þ

r2/ext ¼ 0 ð12Þ
where r2

? ¼ @2
xx þ @2

yy.

We have used the characteristic scales, d for length, d2
=j for

time (with j the thermal diffusivity), bd for temperature, j=d for
velocity, and bdnH0 for the magnetic fields. The Rayleigh number

Ra ¼ aTgDTd
3
=jm0 that contains the thermal driving and acts as

the primary control parameter. The Prandtl number P ¼ m0=j
relates the viscous with the thermal diffusion properties of the
fluid. There are two standard magnetic numbers, M1 ¼
l0bv2

TH
2
0=ðq0gaT ½1þ v0�Þ characterizing the magnetic force relative

to buoyancy and M3 ¼ ð1þ v0Þ=ð1þ v0 þ vHH
2
0Þ the nonlinearity of

the magnetization. M1 is a secondary control parameter, since the
conducting state can also be driven into instability by a large
enough M1.

The viscoelastic Eq. (3) reads in linearized form and assuming
nbd � 1

ð1þ C@tÞsij ¼ 2ð1þ a2 þ a1zÞð1þKC@tÞAij; ð13Þ
and contains two new dimensionless numbers related to the

magneto-viscous effect, a2 ¼ gH2
0 and a1 ¼ 2gnbdH2

0. The former
directly characterizes the strength of the magneto-viscous effect,
while the latter describes its influence due to the inhomogeneity
of the conductive ground state. The ratio a1=a2 ¼ 2nbd might be
small, but the different spatial symmetry requires keeping both
terms in Eq. (13). Generally, there is also a quadratic contribution
in Eq. (13), � a3z2, which is of the same spatial symmetry as the

constant terms. Averaging hz2i ¼ ð1=2Þd2 shows that it can be
neglected compared to 1þ a2.

Viscoelasticity is characterized by the Deborah number

C ¼ k1�j=d
2 and the relaxation ratio K ¼ k2=k1. Since k1;2 are posi-

tive, so are C and K. The Newtonian case is recovered by C ! 0
and K ! 1 (no elasticity), while the limit K ! 0 is unphysical.

For the numerical solutions we have to specify the dimension-
less numbers. The Ra can vary over several orders of magnitude,



434 L.M. Pérez et al. / Journal of Magnetism and Magnetic Materials 444 (2017) 432–438
while a typical value for P in viscoelastic fluids is P � 100—103. For
the magnetic numbers we consider the range M1 � 10�4—10 and
M3 � 1 [24,28]. For aqueous suspensions it is suggested that the
Deborah number is about C � 10�3—10�1 [29–32], but for other
kinds of viscoelastic fluids the Deborah number can be as large
as C � 103. Unfortunately, no experimental data are available for
the relaxation ratio, so we treat K as arbitrary in the range ð0;1Þ.

3. Linear stability analysis

3.1. Mathematical procedure

The flow Eqs. (8), (9) and (13) can be combined to a single equa-
tion for w, the z component of the velocity, by a standard proce-
dure, applying appropriately the curl and div operators as well as
ð1þ C@tÞ with the result

ð1þ C@tÞ 1
P
r2w� Rar2

?ðhþM1½h� @z/�Þ
� �

¼ ð1þKC@tÞr2 ð2a1rz þ ½1þ a2 þ a1z�r2Þw
� �

ð14Þ

The remaining variables relevant for the linear analysis can be
written as a vector field u ¼ h;/;wð ÞT . Using standard techniques
[33], the spatial and temporal dependencies of u are separated
using a normal mode expansion

uðr; tÞ ¼ UðzÞ exp½ik � r? þ st�; ð15Þ

with UðzÞ ¼ HðzÞ;UðzÞ;WðzÞð ÞT and k being the horizontal wave vec-
tor of the perturbations, r? the horizontal position vector, and
s ¼ rþ iX the complex eigenvalue. The latter contains the linear
growth rate, r, and the frequency, X, of the perturbation. With this
ansatz Eqs. (10), (11), (14) are reduced to a set of coupled ordinary
differential equations

D2H ¼ðk2 þ sÞH�W ð16Þ
D2U ¼M3k

2Uþ DH ð17Þ

LFðD2 � k2Þ2W � sQ
P

� 4t1D
� �

ðD2 � k2ÞW ð18Þ

¼ k2QRa M1 þ 1½ �H�M1DUð Þ ð19Þ
where D denotes the spatial differentiation d=dz of the functions U.
The abbreviation Q ¼ ð1þ sCÞ=ð1þ sKCÞ contains the influence of
viscoelasticity and is equal to one in the Newtonian case. The mag-
netic field dependence of the viscosity shows up in Eq. (19) in the
contribution LF 	 1þ a2 þ a1z with the non-autonomous term
� a1 and the constant � a2. The evaluation of their influence is
the main target of this manuscript.

The differential equations have to be supplemented by bound-
ary conditions that are for viscous as well as viscoelastic fluids

W ¼ DW ¼ H ¼ 0; ð20Þ
at the two horizontal rigid boundaries. These BCs produce a more
realistic result than the common free-free BCs. In addition, in the
case of a finite magnetic permeability vb of the rigid boundaries,
the scalar magnetic potential must satisfy

ð1þ vbÞDU
 kU ¼ 0; ð21Þ
at z ¼ 
d=2, respectively, as shown by Finlayson [16] matching the
solution of the bulk magnetic potential with the external magnetic
potential. Note that only in the limit when vb tends to infinity, Eq.
(21) simplifies to DU ¼ 0. For large values of the external magnetic
field (of the tens of thousands A/m) vb is vanishing, while for mod-
erate values of the external magnetic field the parameter vb takes
values close to unity, depending on the material. The numerical
results below are obtained for vb ¼ 1.

In order to solve Eqs. 16,17,19 with these realistic boundary
conditions, we use a spectral collocation method. Spectral methods
ensure an exponential convergence to the solution and are the best
available numerical techniques for solving simple eigenvalue –
eigenfunction problems. Here, we follow the technique of colloca-
tion points on a Chebyschev grid as described in [34]. The colloca-
tion points (Gauss-Lobato) are located at height zj ¼ cosðjp=NÞ
where the index j runs from j ¼ 0 to j ¼ N. Note that here the z-
variable ranges from �1 to þ1 and one has therefore to rescale
Eqs. 16,17,19 accordingly, because the physical domain is defined
in the range ð�1=2;þ1=2Þ. We use N ¼ 14 collocation points in
the vertical direction, for which the equations and the boundary
conditions are expressed. We have checked that using N ¼ 20 col-
location points only modifies the fourth or fifth significant digit of
the result. By using the collocation method, the set of differential
Eqs. 16,17,19 is transformed into a set of linear algebraic equations.
The eigenfunctions ðHðzÞ;UðzÞ;WðzÞÞ are transformed into eigen-
vectors defined at the collocation points. The Rayleigh number Ra
is again used as the eigenvalue of the problem. After this stage of
discretization, one is left with a classical generalized eigenvalue–
eigenvector problem that can easily be solved using the Matlab
routine ”eig” [35].

It is well-known that Newtonian magnetic fluids of the kind
considered here only show a stationary instability. This instability
is not at all influenced by visco-elasticity. However, visco-
elasticity allows for an oscillatory instability, on which we concen-
trate in the following. Since the eigenvalue problem is complex,
one has to make sure that Ra (as being a physical quantity) is a
real number by choosing a correct value for X. Therefore, one is
left with a triplet fRa; k;Xg that defines the marginal stability con-
dition (for a given value of the horizontal wavenumber k). This
procedure is repeated for several values of k leading to the mar-
ginal stability curve Ra versus k. The minimum of this curve
defines the critical Raoc and kc , and the corresponding value for
the critical frequency Xc.
3.2. Discussion of results

In Fig. 1 we discuss the influence of a magnetic field on the crit-
ical properties of the oscillatory instability. The latter is obtained
by choosing the viscoelastic parameters ðK ¼ 0:5; C ¼ 0:1Þ, appro-
priately. For low fields there is no influence. For higher fields the
threshold Raoc decreases with increasing field strength, if no
magneto-viscous effect is present ðg ¼ 0Þ. In that case a magnetic
field only acts on the system via the static Kelvin force. It is known
that in this case the quiescent ground state is destabilized and Raoc

is reduced. Obviously, the magneto-viscous effect has an opposite
influence, since increasing the viscosity stabilizes the quiescent
ground state. For intermediate values of g the competition of these
two effects leads to a non-monotonous behavior of Raoc , while for
larger g the threshold increases (there is a saturation not shown
here). For the critical frequency Xc the influence of the magneto-
viscous effect is less pronounced, since even without the latter
Xc increases with the field strength. There is only a very small
influence of g on the critical wavenumber kc .

A rather similar scenario is found, when the critical properties
of the oscillatory instability are discussed as a function of the
magneto-viscous effect, as it is shown in Fig. 2. Choosing a value
for the external field (H0 ¼ 5 kA/m) large enough to be of influence,
but still small enough for Eq. (4) to be applicable, Raoc (Xc) sharply
(rather slightly) increases for large g, while kc is almost unaffected
by g. This is shown for viscoelastic parameters typical for the oscil-
latory instability (C ¼ 0:1; K ¼ 0:25 and 0.5).



Fig. 1. The critical properties of the oscillatory instability, Raoc ; kc , and Xc , as a
function of an external magnetic field, H0, for different values of the magneto-
viscous coefficient g. The fixed parameters are: C ¼ 0:1;K ¼ 0:5; P ¼ 10; d ¼ 1 mm,
l0 ¼ 4p� 10�7N=A2

;q ¼ 1000 kg=m3, g0 ¼ 9:8 m=s2, aT ¼ 10�3 1/K, v0 ¼ 1:9; vb ¼
1; vH ¼ 10�8 m2=A2, and vT ¼ 5� 10�2 1/K.

Fig. 2. The critical properties of the oscillatory instability as a function of the
magneto-viscous coefficient g at H0 ¼ 5� 103 A=m for two values of the relaxation
ratio K ¼ 0:25 (indicated by diamond symbols) and K ¼ 0:5 (indicated by triangles).
The other fixed parameters are the same of Fig. 1.
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Fig. 3. The critical properties Rac ; kc , and Xc as a function of the relaxation ratio K
for different values of the magneto-viscous coefficient g at H0 ¼ 5� 103 A=m. The
other fixed parameters are the same of Fig. 1. The hollow (filled) symbols
correspond to the stationary (oscillatory) case.

Fig. 4. The critical properties Rac ; kc , and Xc as a function of the Deborah number C
for different values of the magneto-viscous coefficient g at H0 ¼ 5� 103 A=m. The
other fixed parameters are the same of Fig. 1. The hollow (filled) symbols
correspond to the stationary (oscillatory) case.
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Fig. 7. Critical properties, Xc on the left ordinate and Raoc ¼ Rasc ¼ Rac on the right
ordinate, associated with the codimension-2 curves of Fig. 6 are shown as a function
of K. The corresponding values of C follow from Fig. 6.
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In Figs. 3 and 4 we show the influence of g on the transition
from the stationary to the oscillatory instability that is obtained
by varying the viscoelastic parameters K and C. In the former case
lower (larger) values of K (with C ¼ 0:1 fixed) lead to the oscilla-
tory (stationary) instability. Although the critical Rayleigh num-
bers increase for both instability types with increasing magneto-
viscous effect, the value of K, where the cross-over takes place, is
unaffected by g. Again, there is only a slight effect on Xc and almost
no effect on kc due to g. The same scenario is found in Fig. 4, where
C is varied (and K ¼ 0:5 fixed) with the difference that the station-
ary (oscillatory) instability is obtained for smaller (larger) values of
C. In both cases H0 ¼ 5 kA/m.

For specific values of the parameters, the critical Rayleigh val-
ues of the two instabilities, Rasc and Raoc , respectively, can coincide
leading to a codimension-2 point. An example is shown in Fig. 5,
where we have fine-tuned the value of K ¼ 0:56515 (C ¼ 0:1) in
order to get coincidence of the critical Rayleigh numbers. In this
particular case we get Raoc ¼ Rasc ¼ 2341:78; koc ¼ 3:977; ksc ¼
3:424 and Xc ¼ 3:9798. Once we have obtained a codimension-2
point, we can follow this point in parameter space to get a line of
codimension-2 points. Two codimension-2 lines are displayed in
Fig. 6 corresponding to two different values of the external mag-
netic field, H0 ¼ 103 A/m and 5� 103 A/m, respectively. These lines
in the (K;C) plane indicate the location of codimension-2 points. In
addition, we shown in Fig. 7 the corresponding critical properties
associated with these codimension-2 points. It is interesting to
Fig. 5. Example of a codimension-2 point obtained for the special parameter values
g ¼ 6� 10�8m2/A2, H0 ¼ 5� 103A/m, C ¼ 0:1, and K ¼ 0:56515. The other fixed
parameters are the same of Fig. 1.

Fig. 6. Representation of the codimension-2 curve in the (K;C) plane for two
different values of the magnetic field H0 ¼ 103A/m and H0 ¼ 5� 103 A=m at
g ¼ 6� 10�8 m2=A2. The other fixed parameters are the same of Fig. 1.
note that in Fig. 7 the critical Rayleigh values only depend on the
external magnetic field, but not on K, as we move along the
codimension-2 curve.

4. Final remarks

In soft matter science the direct measurement of the various
material parameters of complex fluids is sometimes rather
involved. Alternatively, one can look how a special material param-
eter influences the instability scenario, when the material is driven
out of equilibrium. As an example we have shown here that the
magneto-viscous parameter g describing the magnetic field depen-
dence of the shear viscosity has a prominent influence on the onset
of oscillatory instability in visco-elastic ferrofluids. For a large
enough values of g the threshold increases with the external mag-
netic field, while for g small or zero the external field decreases the
onset. In the latter case the static Kelvin force exclusively carries
the field influence, while a finite g leads to an additional field influ-
ence in the dissipative dynamics. For intermediate g values a non-
monotonous field dependence is found for the threshold. These
results are obtained within linear stability analysis.

In the context of nonlinear dynamics the magneto-viscous
effect is non-Boussinesq giving rise to a non-autonomous stability
problem and to the breaking of spatial up-down symmetry. As a
consequence, one can expect non-trivial pattern selection and
switching between different patterns (e.g. roll and hexagonal con-
vection) by varying the external magnetic field. This requires, how-
ever, a nonlinear stability analysis including a nonlinear modeling
of the visco-elasticity [20].

Another extension of the present work could take into account
the field dependence of the visco-elastic parameters, like the elas-
tic plateau modulus K1 and the strain relaxation k1. The former is
expected to increase with the field, since internal transient elastic
structures are enhanced by the field. While the shear viscosity g
increases under a (static) magnetic field, since (in the simplest
model) the field hinders the mutual rotation of the magnetic par-
ticles, a priori predictions for the field dependence of k1 are not
possible. Such a scenario is important for magneto-rheological sys-
tems, where, however, additional qualitatively new effects, like
yield stress and thixotropy, are to be considered.
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