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Motivated by experiments on optical patterns we analyze two-dimensional extended bistable systems with
drift after a quench above threshold. The evolution can be separated into successive stages: linear growth and
diffusion, coarsening, and transport, leading finally to a quasi-one-dimensional kink-antikink state. The phe-
nomenon is general and occurs when the bistability relates to uniform phases or two different patterns.

PACS numbdis): 82.40.Ck, 47.54tr, 05.45:-a, 42.65.Sf

In spatially extended dynamical systems the breaking ofibsolutely unstable region the system evolves to a nonperi-
reflection symmetry along an axis due to drift has been studedic array of 1D domaingstripes, whereby further coars-
ied, e.g., in Taylor vortices with through flojit,2]. In con-  enig is effectively stopped. In this process a new analytic
vection in complex fluids such as liquid crystals, drift is pro- finger solution emerges, which may be relevant also in other
duced by suitable alignment of the director at the boundariesurvature driven dynamical processes.

[3]. Important features observed in the presence of drift are The investigation is motivated by experimental observa-
the transition from convective to absolute instability, and thetions in a system made of a liquid crystal light vale@n
occurrence of noise-induced structures in the convectivelgffective Kerr mediuminserted in a ring cavity with a spa-
unstable regime. tial displacement of the optical wavefront in the diffractive

In optical patterns drift may be generated by several facfeedback loop. Calling. the free propagation length, akg
tors, including oblique incidence of input light or misaligne- the wave number of the pump laser, the system bifurcates in
ments in resonatorigl—6], spatial displacement in the feed- the appropriate range of lateral displacemehisfrom the
back loop of nonlinear interferometd,8], and angular homogeneous state toward two roll sets with wave number
walkoff between interacting waves in optical parametric 0s-go~ v ko /L [7]. The two sets of rolls are born as stationary
cillators [9]. In this context, different amounts of drift have modes, with equal linear gain, and form an angle,=
been shown to induce transitions between different patternst arcco§2#/(qAx)] with the direction of the wave front
e.g., hexagons, rolls, and zig-zgg. displacement. The roll amplitudes experience nonlinear com-

We here study the influence of drift on bistablgquasiy  petition, an effective diffusion arising from the curvature of
two-dimensional2D) systems quenched into the absolutelythe neutral surface and transport operated by the lateral
unstable region. Without drift one initially has linear growth wavefront shift. The asymptotic pattern observed after some
of fluctuations, saturation, and then coarsening, where larggime consists of an array of striped domains with irregular
domains grow at the expense of smaller ofws are not widths and parallel to the drift direction.
concerned here with inhomogeneous growth via a front pro- Model and simulationsTo describe this process one may
cess. Curvature of the domain walls provides the driving start from coupled amplitude equations for the envelope of
force in this last regime. We will show that with drift in the the two degenerate roll systems. However, in order to bring
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FIG. 2. Distribution of stripe widths as obtained from 200 simu-
lations at velocity ;= 0.2 is shown on a log-linear scalgiangles.
Same parameters as in Fig. 1, different noise realizations. Also
shown are results from very long 1D systeffeircles, squargs
Dashed curve, distribution functioR,(w) from Eq. (3); solid
curve, corrected distributioR ,(w) with a=0.015.
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FIG. 1. Snapshots of the time evolution of the patterns obtained .

simulation of Eq.(1) with nonperiodic boundary conditions
of drift is downward. The size of the box is 18A.00, spatial dis- Withou.t bias for one of th,e tWO_ stable_phages is shown. With
cretizationAx=0.25, time stepAt=0.1. The boundary conditions P€riodic boundary conditions in the direction of the drift, no
areu=0 for x=0, 100 and periodic in thg direction. The initial  Stfipes form because the drift term can be eliminated by a
uncorrelated noise is uniformly distributee, 10 2<u<+ 10 2. Galilean transformation.

Linear growth and saturationTo elucidate the quantita-
out the generic features more clearly, we here present a studlye aspects of this scenario, we consider g.in a rectan-

of the minimal Ginzburg-Landau model for a real scalar fielddular region 8<x<L,, 0<y<L,, with boundary condi-
u(Ft) [FE(X ] tions u=0 for x=0, L, (note that Neumann conditions

duldx=0 do not change qualitatively the pictures described
_ here and with periodic boundary conditions in tlyedirec-
du=Au—u3+DV2u+uv4d,U. 1 ) . )
! Vg% @ tion (Ly,L,>&=DI/\). In the linear regime|(|<1), we
: . : : . - du in terms of a set of modal solutions
Simulations with the coupled amplitude equations conf|rmeoeff(%apr)‘t ) -
the robustness of our results. Equatioh) describes a e Fqp(x,y) that satisfy the boundar_y con_dltlons. One
: : finds Fgq,=f X)€Y, where f,=e ¥osingx, p
bistable system with symmetry-degenerate statest A\ —> /Lqip q—O 1 ’ = q/L _19
and nonconserved order paramefpossibly an envelope ; T”:Y _lé’Dr/‘y_. ’Ih ' dft Q—med_ﬁx, . nxl_ ’tr,f.’ N d
The group velocityv4(=0) accounts for the drift along. ere,lp=2D/vg IS the “drit-versus-ditfusion length™ an
The linear growth raté and the diffusion coefficiend can / 2,42 , 2, 2
. K L. = — + — _ .
be scaled away; however, in our presentation we explicitly o=N=D(@"+p%), N =N1-vglvmad 2
keep them for the sake of clarity.
Starting from spatially distributed random initial condi-

tions with zero average and rmg<1, drift and diffusion the trivial solutionu=0. In the convectively unstable range,

act as follows. First, diffusion and linear growth togetherthe solutionsu=+ X are, in the absence of permanent

‘%feate,f’?‘ selective am.pl|f'|catl|on .Of the Iong-wavelepgth Va.lr'ahoise, swept out of the system by the drift term, restoring the
tions (“linear coarsening’), yielding a random spatial distri-

bution of the field. Then, the nonlinearity transforms thattrlwal state. With our spatially distributed initial conditions

distribution into saturated patches of either phase separatet e reduction of the growth rate by the difiee Eq(2)] is

) . . : felevant only near the “inflow” boundark=0 within a
by (comparatively sharp interfaces moving under the influ- strip of width ~Ip. Further downstream advection restores
ence of curvature and drift. The effect of the drift, together P D-

with nonperiodic boundary conditions, is to drive the 2Dthe unreduced grpvvth. Our results for thg CAFE U max Will
demonstrate the influence of the reduction factor.

patches towards a quasi-1D pattern with a random distribu- From Eq.(2) we see a selective amplification of modes

tion of stripes. Once the pattern has become 1D, a cut in thﬁear —Db=0 out of the broad band of modes initially ex.
direction perpendicular to the drift shows a structure of kinks qa=p= y

and antikinks. It is well establishedlO] that in an ideal Ci.ted.' Thus, within the linear range, at ti.me t, one expects a

system, this structure will eventually relax to one of the tWO@stnbqun of wave nlglmberp (irrespective ofq) propor-

phases. However, due to the very weak kink-antikink interfional toPi(p,t)=e" P, _

actions, this takes an exponentially long time. Moreover, in Whenu becomes of order 1 one enters the nonlinear re-

real systems as well as in simulations this process is actual§ime. This occurs when the fastest growing modgp§

stopped at some stage due to the effect of pinning. =0 reaches 1, i.e., Wheube”'t'%l, Ug=Ug/(NxN,), where
The scenario is illustrated in Fig. 1, where a numericalN;=L;/Ax are the number of lattice points in the two direc-

for A\ =1, D=0.2,v4=0.2 at four different times. The direction

The velocityv ax=2VAD separates the range of absolute
(vg<<vmay from that of convective instabilityuy>v 4, Of
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tions. The saturation processes actually represents an ur4
solved probleni11,12. However, it rapidly leads to the re- - —
gime of “late time coarsening,” where one has 2D patches | n=L,/w
with u==\ separated by domain walls of width & 3 -
=+/D/\. The first snapshot in Fig. 1 corresponds to that
stage.

The simplest theory for the distribution of domain widths o | LeemTTTTI
w assumes that the distributid?(p,t) of wave numbers in
they direction transforms at a timg~t, into a distribution
of stripes of “double width” w=2x/p. The factor of 2r
implies that the natural elementary unit comprises two

(black-whitg stripes. Thus, we have for tiennormalized 1~ = _ -2 !
distribution, Uo=10 10g10(Ve/ Vimax)

00 T 15 ro 45 00

P,(w) = |dp/dw|Py(p) = (2m/w?)e~We/W? (3
) 5 5 R — FIG. 3. Average number of double stripke;és/_vvsvg/vmalx from
with wg=(27)“Dt¢, te=N"""In(1/up). theory (solid and dashed curvesThe symbols represent averaged

Next we compare the distributioR,(w) with the results  results from various numbers of trial simulations for the larger
of simulations. In Fig. 2 the distribution of stripe widths noise amplitude (number of trials from left to right:

obtained after a tim&=200 is shown(triangleg for 100  25,100,100,100,100,1R0The discrepancies are presumably mainly
simulations on a log-linear scalsame parameters as for Fig. due to fluctuations.

1). The dashed curve represents the distribution funa®n

with w.=12.0 calculated from the noise strength. Clearly the v,=—Dxk, (4
function (3) with adjusted prefactornormalization de-

scribes the simulations well except for large (there the  wherev,, is the normal velocity of the interface in a frame
probability has already dropped by more than one order ofnoving with the drift velocityv,. The coarsening process
magnitude. One may conclude that, a=0.2, the width of  eliminates the small domains and tends to straighten out the
the stripes is mainly determined at the moment when thenterfaces; see Fig. 1=80. Solving the above equation one
nonlinear regime starts. ' ) . expects coarsening accordingRe: \/Dt, whereR is a mea-

In order to examine the discrepancies at large widths wgre of the domain sizEL1]. Note that this growth law is
have redone the simulations for a larger systdm=(100,  indeed similar to the “linear coarsening” affected by the
Ly=200) without detecting a chandthe triangles actually ~ selective amplification in the linear regime, as seen from the
include these resultsWe also did analogous simulations on fa|-off length w,. The boundary conditions at=0 in the

a very long 1D systeml(=L,=2000) with two very differ-  sharp-interface regime orient the domain walls perpendicular
ent noise strengths. Interestingly, after rescalngaccord- g the boundaries.

ing to the noise strength_Jo, the distribution of domain In the simulations of Eq(1), one often observes fingers of
widths is essentially indistinguishable from the 2D stripeone phase traveling in thedirection with a constant veloc-
widths; see Fig. 2. ity, preserving their shape; see Fig. 1. We found a family of

The simple distribution functiorP,(w) apparently over- exact solution of Eq(4) that describes the fingers moving
estimates the occurrence of wide domains. Indeed, theith velocity vy,
simple picture proposed above does not include processes
where a wide domain splits into three by the insertion of a Y=+2 arctaiye* %o—1)+Y,, 5)
smaller domain. Although this appears to be an interesting
problem worthy of further study we proceed phenomenologiwherex_Ubt:x||'3/4 andy=YI,/4, 15,=2D/vy . The width
cally by going over toP,(w) =P (w)ex—a(Ww,)’]; see  of the finger is 2r in the reduced units, ob=l}/2
Fig. 2 (solid ling), wherea=0.015. We offer the following = 7p/y, in physical units. Thus, the velocity of the finger is
interpretation: after the long-wave componentsuwhave 5 ynjque function of the widthv,=D/b, in the frame
saturated, the shorter-wave contributions still grow somemgying with the drift velocity. In this frame the fingers re-
what, thereby annihilating large domaitess mentioned be-  act. For the finger to grow in the laboratory framg has to

fore). _ _ _ _ overcomevy,. Therefore, there is a minimum width,;,
Thus, the final outcome is described rather well by a lin-_ mD/vg=/2 Ip. Note that the solutior(5) is different

ear, and in fact even 1D, analysis of the problem, with & the finger solution that occurs in crystal growth pro-
moderate nonlinear correction. This is to be expected fOEesse$14].

veIOC|t2|§s such that the drift-versus-diffusion timg This amounts to saying that the tip curvature imposes a
=D/uvy is small compared téor at most of the order of..  |ower bound on the distribution of the stripe widths. The
It this Is not the case 2D coarsening enters the prablem. sterage finger widttw is calculated from the distribution

now study these effects. P : : . —oh
Nonlinear domain growthin the sharp-interface regime Prm(Ww), limiting the integration tow=Win=2bmin,

the motion of the interface between different domains is

driven by the local curvatur& according to the equation w= fx dwwp(w)/ fw dwP(w). (6)
[13] 2bmin 2bmin
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In Fig. 3 we show the average number of double strﬁes of lamellae in bistable systems. The generalization to a non-
==Ly/Wfor the noise level used in the simulatiotend for symmetric situation where the flat interface moves with a

much weaker noige The increase aiv for low drift veloci- velocity v is also applicable to bistable and excitable chemi-
ties is a direct consequence of the cutoff introduced above(’taI medla[lﬁ].' . . .
When w,,,.<<w, (which means sufficiently high veloci- Our_analy5|s of the distribution of str_|pe wldths shovys
ties), the lower cutoff becomes irrelevant. Then the integralsIhat drift can Serve as a tqol to st_udy diffusive coarsening
in Eq. (6) can be calculated analytically leading o processes. Selecting the drift velocity properly and introduc-
=27-r*'1’2exp(2a1’2)K (2a¥)w_~2.25v,. This approxi- ing a time delay before application of the drithis can cer-

0 ¢ Tl tainly be done in simulations and in some experimental sys-

mates the results well in the region of the maximum and tg
the right of it 9 temg one can get an extended snapshot of the state of the

Discussion and outlookComing back to the experiment SYStem near the inflow boundary at a chosen time. Thus,
that motivated our study, the observed transient dynamic¥hereas fast drift that carries the system into the convec-
and the asymptotic pattern agree qualitatively with the theoliVely unstable range can be used as a probe for subcritical
retical mechanism proposed here. Observation of the varidl0ise, slow drift can probe some aspects of the supercritical,
tion of the distribution of domain widths, as predicted by thenonlinear regime.
model, would require either a variation of the diffusion co- Due to the generality of such a dynamical mechanism, it
efficient not easily obtainable, or a variation of the drift ve- has to be expected in other systems where diffusion and drift
locity. However, the range of velocities where one has bistaact together. The case of a conserved order parameter, relat-
bility is rather limited (see Ref[7]). Thus, we propose to ing to spinodal decomposition, appears of interest. We ex-
perform experiments in other optical or hydrodynamicpect similar qualitative features, although the distribution of
bistable systems. stripe widths should be quite different.

In the framework of our description, pinning of domain
boundaries due to their interaction with the underlying pat- The authors acknowledge A. A. Nepomnyashchy, A.
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system with homogeneous bistable states. 97-30. J.B. and L.K. benefitted of EU Network grants under

The finger solution presented for an interface moving un-Contract Nos. FMRXCT960010 and FMRXCT960085. S.B.
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