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Amplitude equations for Rayleigh-Benard convective rolls far from threshold
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An extension of the amplitude method is proposed. An iterative algorithm is developed to build an amplitude
equation model that is shown to provide precise quantitative results even far from the linear instability thresh-
old. The method is applied to the study of stationary RayleighaBe thermoconvective rolls in the nonlinear
regime. In particular, the generation of second and third spatial harmonics is analyzed. Comparison with
experimental results and direct numerical calculations is also made and a very good agreement is found.
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[. INTRODUCTION by several authors in the pasee, for instancd,7] and ref-
erences therejnin [8], experimental results are reported and
Rayleigh-Beard (RB) convection[1,2] is an illuminating  a perturbation analysis limited to third-order terms and based
example of pattern formation outside of equilibrium. Numer-on the Malkus-Veronis approacf9,10] is presented and
ous studies have been devoted to this system. Some of thecompared with experiments. Pure numerical calculatiahp
are concerned with the nonlinear competition between differand a double Fourier expansionrand z combined with a
ent structures that develop above the linear convectiv&alerkin method 7] are also shown to display the appear-
threshold. For instance, the stability domains of rolls, hexaance of the second- and third-order harmonics of the basic
gons, or square cells have been determined in terms of thgne roll pattern.
different parameters of the systei®—5]. The transition to In this paper, we propose an extension of the amplitude
more complex, nonstationary, behaviors has also been anaiethod used in many nonlinear studies on thermoconvection
lyzed [6]. Interesting general references to the RB problem(see[2] and references therginFrom a theoretical point of
may be found, for instance, in the books by Koschmigdégr view, the original amplitude method is valid only asymptoti-
and by Colinetet al. [2]. cally close to the linear stability limit. Unfortunately, this
Navier-Stokes equations, and, more generally, the equanethod has sometimes been used to analyze nonlinear re-
tions of continuum mechanics are nonlinear. More preciselygimes that are not close to the threshold. For instance, the
in the simplest cases, the nonlinearities are quadratic andepth of the subcritical convection domain in Marangoni
originate in the advective terms of the material time deriva-convection and the transitions between rolls, hexagonal cells,
tives. For this reason, when a spatial structure appears in trend square patterns were determined in this corjtexb].
solution of these equations, its second-order harmonics afEhe value of the control parameter corresponding to these
directly excited through the quadratic terms and may influ-bifurcations is not always small, which makes these results
ence the observed pattern. An interesting illustration of thejuestionable, from a quantitative, but also from a qualitative,
influence of the second-order harmonics has been recentfyoint a view.
presented by Regnieat al. [5] who examined the interface In this paper, we develop an extended amplitude formal-
deformations of an hexagonal pattern in coupled gravityism to allow a rigorous analysis of convection further from
driven and capillary thermoconvection. They showed thathe linear threshold. For simplicity and clarity, the formal-
when the depth of the fluid layer is such that the deformaism, which is based on an iterative algorithm, is presented
tions of the upper free surface due to gravity and due tdere through a detailed analysis of Rayleigh&e thermo-
capillarity exactly compensate for the linearly unstableconvective rolls in the nonlinear regime. More precisely, we
mode, the interface relief in the nonlinear regime is detershow that the extended method permits us to account in an
mined by the second-order harmonics offlyybrid” relief ). easy way for the experimental observations of the second
One motivation of the present work is the experimentaland third spatial harmonics. The validity of the method far
evidence of the appearance of not only second-, but alssom the threshold is checked by confronting it to experi-
third-order harmonics in a thermoconvective roll pattern inmental data and also direct numerical simulations.
the RB problem. This problem has already been approached Our experimental set-up is described in detailglip)]. Let
us summarize the description of the apparaftig. 1). A
finite rectangular container with dimensionsx12x1 cn?
*Electronic address: PC.Dauby@ulg.ac.be is filled up with a Rhodorsil 47V100 silicone oil and heated

1063-651X/2001/646)/0663017)/$20.00 64 066301-1 ©2001 The American Physical Society



P. C. DAUBY, TH. DESAIVE, J. BRAGARD, AND P. CERISIER PHYSICAL REVIEW &4 066301

= gapd?
]y ? Re=—"—, (4
0000000000 )
FIG. 1. Sketch of the experimental setup Pr= X ®)

from below. The upper and lower boundary of the fluid arewhere » and « are the liquid kinematic viscosity and the
two horizontal glass plates with a thickness of 0.3 cm. Bycoefficient of thermal expansion, respectively. _
measuring the deflection of a laser beam shining through the The boundary conditions for the velocity perturbations at
fluid, the overall horizontal temperature gradient is deterihe bottom ¢=0) and at the topZ=1) of the layer express
mined [12]. The velocity field is also measured using PIV. the no-slip condition along the horizontal plates. For the tem-
For a relative distance to the linear convective thresholdP@rature perturbations, a general Biot condition describes the
slightly larger than 1, second- and third-order harmonicd'€at exchanges through the boundaries. The corresponding
clearly appear in the horizontal temperature gradient and vekquations are
locity field.

In Sec. II, the basic governing equations for the RB prob- u=0 atz=0 and atz=1, 6)
lem are recalled and the classic nonlinear amplitude method JT
is briefly described. Section Il contains a qualitative expla- — —+Bip T=0 at z=0, (7)
nation of the presence of secondary harmonics based on an 9z
amplitude model with only four modes. In Sec. IV, we .
present the extended amplitude method, which is the main C Bi,T=0 at z=1, ®)

result of the paper. It consists in a precise strategy to build an Jz
amplitude model valid even far from threshold. We compare
the solution given by this model with direct numerical cal- Where Bj and Bj denote the Biot numbers at the bottom
culations. We show that in the specific case of RB convecand the top of the layer, respectively. In the experiments that
tion, a model with 11 amplitude equations gives very goodwe are considering in the present paper, these Biot numbers
quantitative agreement with numerics. We present our exare equal since the glass plateszat0O andz=1 are the
perimental results in Sec. V and again compare these resulgg@me. The value Bi46 is determined by using the expres-
with the solution of our model. Conclusions are drawn in thesion [13] Bi=(\/\)[Kc/tanhkd,q /d)] where N4
last section. =1.74 Wm K"t andd,,;=0.3 cm are the heat conduc-
tivity and thickness of the glass plates, whila
=0.16 Wm K1 is the heat conductivity of the silicone
oil. The corresponding dimensionless critical wave number
and Rayleigh numbers are given by=3.07 and Ra.

Let us consider, for simplicity, a horizontally infinite fluid =1653, respectivelya standard spectral-tau methidat,15
layer that is contained between two rigid horizontal bound-was used for the calculations of the critical parameters
aries. The equations for this system are well knddr2]. The starting point of our nonlinear method is the ampli-
When the Boussinesq hypotheses hold, the perturbatiotside method that has been described in details, for instance,
with respect to the conductive solution obey the followingin [3,2]. Two-dimensional rolls are the only convective pat-

II. BASIC EQUATIONS AND BASIS OF THE NONLINEAR
METHOD

set of partial differential equations: tern observed in the present experiments, therefore, the gen-
eral three-dimensional method is simplified here into its two-
V-u=0, (1) dimensional2D) counterpart. Let us recall the main steps of
the method. First, the Rayleigh number is fixed to its critical

Pri[du+(u-V)u]=—Vp+VZ2u+RaTe,, (2)  Vvalue Rg and the eigenmodes of the linearized equations are

numerically determined by a spectral tau method, with the
growth ratec, of the perturbations as eigenvalue parameter.

. —_ = 2
ATHU-VT-w=V-T. © Using complex notations, the 2D eigenfunctions are

We have chosen the verticalaxis in the direction opposite Uy p=Up(2)explikx)exp(opt), 9

to gravity. The equations are written in a dimensionless form '

with lengths scaled by the thickned®f the liquid layer. The Tip= Op(2)exp(ikx)exp(ot), (10)
time scale isd?/ , with « the heat diffusivity of the liquid. '

The velocity is scaled byk/d and the temperature scale is wherek is the horizontal wave number axdhe horizontal
chosen as3d, where g is the vertical temperature gradient coordinate. It is important to note that for each valud,cn
that would exist in a purely conductive state. Symbols infinite set of eigenvalues exists for the growth rate, with
=(u,v,w), p, and T represent the dimensionless perturba-corresponding vertical eigenfunctioh,(z) and 6,(z) for
tions (with respect to the conductive solutjoof the velocity, the velocity and temperature perturbations. The maximum
pressure, and temperature fields. The Rayleigh and Prandthlue of the growth rate is zero and corresponds to a wave
numbers Ra and Pr are defined as number equal to the critical vallg . The indexp runs from
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one to infinity and numbers the negative growth rates, whictwhere the angular bracket is used to denote integration over
are assumed to be ordered in such a way that the real part tife fluid volume.

o, decreases witp (for k=k., one hasr;=0). The eigen- Using a slaving principl¢16,17, the infinite dimensional
modes are normalized in such a way that the maximum valueet of Eqs.(12) may be reduced to a finite number of ordi-
of the modulus off,(z) is equal to 1. nary differential equations for the amplitudes of the most

The solution of the nonlinear equations is then expressednstable modes of convection. The procedure leading to this
as the following series depending on the eigenmodeseduced system may be briefly summarized as follows. First,

(up,Tp): the infinite number of eigenmodes is split into two catego-
ries. The “basic” modes are the most unstable modes, with
Up the real part of the growth rates close to zero while the
u _Z As(| R tec (11) “slaved” or “stable” modes are quite damped, due to quite
T P _a°-|- - negative values for Re(p). These slaved modes are present

Ra " in the solution only as the quadratic response to the nonlinear

growth of the basic modes above the threshold and their own

whereP is written for k,p, and theAp(t) are the complex dynamics may be neglected. For this reason, the time deriva-
time-dependent amplitudes. It is worth emphasizing that théive is set to zero in the evolution Eq4.2) for their ampli-

spatial functions used in this decomposition are not exactlyudes. This results in an algebraic relation between the basic

the eigenmodes of the physical problem, due to the rescalingnd slaved amplitudes. When the amplitudes of the slaved

factor Ra/Ra. However, for each value of Ra, these func-modes are small with respect to the basic ones, the quadratic

tions up and (Ra/Ra)Tp may be considered as the eigen- terms of these algebraic equations containing only damped

modes of a “mathematical” eigenvalue problem, which is modes may be neglected and the following expression of the

easily obtained from the original problem by letting this fac- slaved amplitudes in terms of the basic ones may easily be
tor explicitly appear. These spatial modes may thus be cordeduced:

sidered as independent. It may also be checked that the ad-

joint eigenmodes of this problem are given by 1
(up,(Ra/R@)Tp), where the (5, Tp) are the adjoint eigen- Ap,=— o~
modes of the original problem. From a more physical point

of view, the introduction of the rescaling factor RRa in  where the subindeg indicates that a slaved mode is consid-
Eq. (11) may be justified by noting that the temperature scaleered. In the right-hand side.h.s) of Eq. (15), the indicesQ

used in Eqs(1)—(3) is Bd while the “critical scale” 8.d is  andL refer to basic modes only. Note that this relation, based
used to determine the eigenmodé§). When the unknown on the smallness d&p , is always correct close to the thresh-
fields are written under the forrt1l), the incompressibility 5|4 yyhere the amplitljdes of the basic modes can be assumed
Eq. (1) and the boundary condition®)—~(8) are automati- g fficiently small(at least when the bifurcation is supercriti-
cally satisfied. The seriegll) is then introduced in Egs. cal, which is actually the case for rolls

(2)—(3), which are then projected on the adjoint eigenfunc-  gynressiong15) for the amplitudes of the slaved modes
tions of the “mathematical” problem introduced above. The may then be introduced in the evolution Eq&2) for the
momentum equation is thus multiplied y}, the velocity  pasic modes. If terms of order higher than three are ne-
field of the adjoint eigenvalue problem and the energy equagjected, the following final “amplitude equations” for the
tion is multiplied by (Ra/RgTp, with T the temperature  amplitudes of the basic modes are obtained:

field of the adjoint eigenvalue problem. Both relations are

added and integrated over the fluid volume. When the bior- dAp

thogonality relations between the solutions of the eigenvalue at opApt f% MpoAq QEL NpoLAQAL

problem and its adjoint are used, together with the incom- ’

pressibility condition and the boundary conditions, we get

the following evolution equations for the amplitudes: +Q§R TrQLRAQALAR- (16)

Np oLAGAL 15
UpsQZL P.QLAQAL (15

dAp D 3 In this relation, all amplitudes and indices correspond to ba-

gt~ orArte 5 MPQAQ+Q’L NequAQAL. (12 sic modes only and the definition of the matfixis easily
deduced from the context. Note also that in practice only a

In this equatione= (Ra— Ra,)/Ra, is the relative distance to finite number of slaved modes is considered to deduce Eg.

the threshold and the matricésandN are given by (16). Equations(15) .sho_w that the amplitudes of the slaved
modes decrease wighsince the modulus of the growth rate

increases wittp. In the RB problem, the numbe (k) of

o= (Opwo) ' (13)  slaved modes that are taken into account for each valke of
(0p0p+Pr tup-up) is limited to four or five, which is sufficient to ensure con-
vergence of the coefficients of the amplitude equations, as
(05(ug- Vo) + Prflu’F‘,-[(uQ-V)uL]) shown _|n_[3] an_d chec_ked again in this paper.
NpoL=— " < , (19 To finish this section, let us recall that the Ed46)
(0p0p+Pr -up-up) should be considered as a valid model for the nonlinear con-
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FIG. 2. Stream functiofthick lineg and temperature fielgthin
lineg) in a plane perpendicular to the rolls fer=2.91.

vection only if the slaved amplitudes remain small. Other-
wise, terms of order higher than three should be taken intc

account. . ) . .
FIG. 3. Dimensionless horizontal temperature gradigiiitver-

susx at z=0.45 and fore=0.1, 1.19, 1.69, and 2.91.
I1l. SECOND- AND THIRD-ORDER HARMONICS IN THE
NONLINEAR REGIME temperature in the fluid layer as shown in Fig. 2. The defor-

The simplest model of nonlinear roll convection consists™ation of the rolls due to the presence of secondary harmon-

in a unique amplitude equation for the linearly unstable/S is clearly seen in the picture. In ordgr to interpret the

mode. The quadratically generated slaved modes are then msul_ts of our measurements for the horizontal temperature

modes p=1) with k=0 andk=2xk,. Since the modes gradients, we also plot in Fig. 3 the reconstructed horizontal
= - - C*

with k=3X Kk, are absent from the description, this model isten;p;rature gradti)er@XTdat Z.:0'4hS f?r e=0.1,|.1.;9, 1'6?; |
unable to provide any account of the presence of the thirg"d 2-91(again obtained using the four amplitudes made

harmonics observed in experiments and obviously has to b Io.se.to the threshold, the curve is almost a sine function
extended. while it becomes more and more deformedess further

To describe this experimental evidence, we must increas@créased. The deformations are due to the increasing impor-
(first in a heuristic waythe number of modes entering the [@nce of the second and third harmonics of the miogid...
amplitude Eq.(16). This amounts not to use the simplified In' pamcular,. for the horizontal temperature gradpnt, the
representatioiil5) for some of the slaved and quadradically third harmonics appears clearly ferclose to 1.19. Itis also
generated modes but rather include them in the basic mode§teresting to note that due to the symmetry of the physical
Here as basic modes we take not only the critical one bugyStem with respect ta=0.5 the second harmonics disap-
also the three modes with=0, 2, and k., andp=1.The Pears at midheight, as one can see in Fig. 4 where the local
first two additional modes are the direct quadratic responsgXtréma due to the third harmonics have all the same
to the nonlinear growth of the critical mode while the mode PScissa.
with k=3Xk, is present because of the quadratic interac-
tions of the two mode&k=1 and 2x<k;. This choice of the IV. GENERALIZED AMPLITUDES METHOD AND
basic modes is dictated by the experimental observations and COMPARISON WITH NUMERICAL CALCULATIONS
may be considered as somewhat arbitrary from a theoretical

point of \;'E\:" Hc;wevTr, t"lhthe next sectlt?n,_we ddevelop aqualitative agreement with experiments and numerical simu-
precise strategy 1o select the hecessary basic modes. lations. However, it is possible to improve further, i.e., also

f ;Lhe m]?desbtha_t are %enera;?dhby the (?Iuadrang mteracgo%'set a quantitative agreement. In this section, we build a pre-
of these four basic modes, which we call secondary Modeg;qe strategy to select the relevant modes that enter the am-

consist of the eigenmodes wikh=0, 1, 2, or 3Xk, andp - -
. - plitude equations.
>1 as well as all the modespe1) with k=4, 5, and 6 The method developed in Sec. Il and leading to @)

X ke. The real part of the growth rate for these secondaryg \ajiq only when the quadratically generated secondary
modes is of course negative and their dynamics is neglected, - yc'have small amplitudes. Wheis increased, this con-

It a simplified expres;ior@lS) Is us_ed to express the se.cond— dition is not satisfied and the model is no longer accurate.
ary modes, four amplitude equatiofis) may be determined Let us first consider a unique amplitude equation for the
for  Ag=Aoxk,1: A=Ak Ae=Aaxk @M Az ineany unstable mode. For the largest valueeothat we
=Asxk, 1 have to deal with in the problertthis value is around three
The stationary solution of these equations is then used tm our casg we solve the amplitude equation and determine
reconstruct the unknown fields and represent the velocity anthe value of the amplitude of the basic mode. Then, we cal-

The results given in the previous section are in good
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0.7+ e=119 represented by the dots in Fig. 4. The agreement between the

9. direct numerical simulations and the 11 amplitude equation
model is excellent and provides a confirmation of the validity
of the generalized amplitude equations far from threshold.
The iterative procedure is very appealing because it gives a
much better understanding of which are the physical relevant
convective modes.
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V. COMPARISON WITH EXPERIMENTS

We have carried out different experiments to validate the
extended amplitude equation model. For each given experi-
mental situation, the value efhas been determined in terms
of the thermophysical parameters and the applied tempera-
ture difference between the top and bottom glass plates. The
temperature difference across the fluid layer is measured by
/ thermocouples located at the top and bottom surfaces of the
5 o : 'V = 5 fluid. Since the estimated Biot number is very large (Bi

’ X ’ =46), the top and bottom plates are almost perfect heat con-
ductors and the conductive temperature differe@deis al-

FIG. 4. Dimensionless horizontal temperature gradigfitver- most equal to the experimental temperature difference.
susx atz= 0.5 and fore=0.1, 1.19, and 2.91. The dotted and solid Therefore, the experimental Rayleigh numlisdy is evalu-
lines have been calculated by using 4 and 11 amplitude equationga directly in terms of the temperature measurement.
respectively. The dots correspond to direct numerical calculationgo coefficient of thermal expansion of the Rhodorsil
(AQuILON cods. 47V100 silicone oil used in experiments ds=9.54x 10~ *

K~1. The thermal conductivity was given abovk=0.16
culate the values of the secondary amplitudes using E). Wm 1K™ !) and the specific heat at constant pressure is
and check the consistency of the results with the fact that the=1454.4 JK kg~ 1. Since the experiments are carried out
amplitudes of the secondary modes must remain small witin different temperature ranges, the variations of the density
respect to the amplitudes of the basic ones. If a secondagnd viscosity withT are taken into account, and we take the
amplitude is larger than some small fraction (#0n our  value corresponding to the mean temperature of the experi-
calculationg of the largest amplitude of the basic modes,ment. The phenomenological laws for these variations are
then we have to include this mode in the basic modes in thgiven by p=988(1—aT) and Ifln(10°v)]=—1.927
next model. This procedure is in fact equivalent to consider< 10 3T+0.34921, wherev is the kinematic viscosity and
ing terms of order higher than three in E46) but is much  whereT in the last expressions is the temperature in Celsius
easier. After determining the basic modes of the model, théit gives Pr=880). Using the thermophysical properties and
secondary modes are determined as before: their horizonttiie measured temperature difference, we determine the ex-
wave numbers are equal to the sum or the difference of angerimental Rayleigh number. The relative distance to the
two wave numbers of the basic modes. Moreover, for eacthresholde=(Ra— R&)/Ra, is calculated by using the criti-
value ofk, it is sufficient to fix Ng(k)=4 or 5 to have cal Rayleigh number 1653 previously determined in Sec. Il.
convergence of the cubic coefficients of the amplitude equaPata from four different experiments were collected in which
tions. This iterative improvement of the model is repeatedhe temperature at the bottom of the fluid was fixed to 20,
until all secondary modes have small amplitudes. In the RBLO, 20, and 40 °C and the temperature differences were 2.41,
problem studied in this paper, this iterative scheme results i8.7, 5.7, and 5.7 °C, respectively. The corresponding values
a “generalized” 11 amplitude equation model, with, respec-of the relative distance to the threshold are 0.10, 1.19,
tively, 3, 3, 2, 2, and 1 equations for the amplitudes of thel.69, and 2.91, respectively. In all experiments, ten rolls par-
most unstable modes with=0, 1, 2, 3, and & k.. allel to the shorter sides were observed. It is well known that

The comparison of our theoretical approach and numerithe wavelength increases in the nonlinear regime but in the
cal calculations is presented in Fig. 4 where the horizontatonfined problem we consider, with rather small aspect ratios
temperature gradient is given as a functionxdior z=0.5  and for rather small values ef the number of rolls is mainly
and for different values ot (e=0.1, 1.19, and 2.91). The determined by the geometr}8,18]. The measured wave
solid curves correspond to the 11 amplitude equation modetumber of the eight inner rolls was 2.6ih dimensionless
while the results for four equations are represented with dotunits) and the coefficients of the amplitude equations were
ted lines. Where is not too large, the two curves coincide recalculated using this experimental value. The comparison
almost perfectly as expected. Far from threshold, the differbetween the experimental data for the different valueg of
ence becomes significant. We have performed a direct nugiven above and the theoretical predictions is presented in
merical simulation of Eqs(1)—(3) using theAQUILON code  Figs. 5 and 6, where all quantities are expresse(limen-
(finite volumes PDE solver developed at the MASTER-siona) Sl units. In Fig. 5, the horizontal temperature gradient
ENSCPB, Bordeaux, Francéor e =2.91 and the results are is represented at midheight of the layer as a function of the
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FIG. 5. DimensionalSI unit9 horizontal temperature gradient ~ FIG. 6. DimensionalS! unitg vertical velocityw versusx at
3, T versusx at midheight and foe=0.1, 1.19, 1.69, and 2.91. The midheight and fore=0.1, 1.19, and 2.91. The solid curves corre-
solid curves correspond to the results of the 11 amplitude modetpond to the results of the 11 amplitude model ith2.67, while
with k=2.67, while the differents symbols represent the experimenthe different symbols represent the experimental data.

tal data(see text for details about the experimental conditions . . . .
( P y been provided, which consists of controlling the smallness of

: . . Lo ._the amplitudes of the secondary modes. If these amplitudes
hprlzontal coo_rdlnate. The vertical velocity IS _dlsplayed N are not small, the corresponding modes must be included in
Fig. 6. The solid lines correspond to the predictions of our 1]the basic modes and an additional amplitude equation must

amplitude equatjon model while the different symbols "'®P"€%6 considered. This procedure was used to analyze Rayleigh-
sent the experimental data. The agreement between Oy

del and th ) S| d. Besid . enard convective rolls and the results were compared to
model and the experiments IS very good. BesIdes experimelig qct nymerical calculations as well as to experiments. In

tal error bars, the smaI_I discrepancies may be attributed Both cases, the agreement is excellent. Besides the general-

the fac’.‘ that th? experimental rolls are not perfectly WO-izeq amplitude equation technique, our work provides an

g!mens!ona: V\lﬁfh'let ourdt?eory (1.0?3 n(.)tt.accoufntthfo:hthree-analysis of the appearance of spatial harmonics of the basic
Imensional eflects and for spatial variations of the thermo;,q, pattern in a convective flow and the actual interactions

physical constants (com_puted here at the average potween the different modes are clearly emphasized.
temperaturg It is interesting to note that the agreement is

excellent for the velocity because the corresponding mea- ACKNOWLEDGMENTS
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