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Amplitude equations for Rayleigh-Bénard convective rolls far from threshold
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Universitéde Liège, Institut de Physique B5, B-4000 Lie`ge 1, Belgium

J. Bragard
Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University,

Boston, Massachusetts 02115

P. Cerisier
IUSTI, UMR CNRS 6595, Universite´ de Provence, Technopoˆle Château-Gombert, Rue E. Fermi 5, F-13453 Marseille Cedex 13, Fran

~Received 13 February 2001; published 9 November 2001!

An extension of the amplitude method is proposed. An iterative algorithm is developed to build an amplitude
equation model that is shown to provide precise quantitative results even far from the linear instability thresh-
old. The method is applied to the study of stationary Rayleigh-Be´nard thermoconvective rolls in the nonlinear
regime. In particular, the generation of second and third spatial harmonics is analyzed. Comparison with
experimental results and direct numerical calculations is also made and a very good agreement is found.
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I. INTRODUCTION

Rayleigh-Bénard~RB! convection@1,2# is an illuminating
example of pattern formation outside of equilibrium. Num
ous studies have been devoted to this system. Some of
are concerned with the nonlinear competition between dif
ent structures that develop above the linear convec
threshold. For instance, the stability domains of rolls, he
gons, or square cells have been determined in terms of
different parameters of the system@3–5#. The transition to
more complex, nonstationary, behaviors has also been
lyzed @6#. Interesting general references to the RB probl
may be found, for instance, in the books by Koschmieder@1#
and by Colinetet al. @2#.

Navier-Stokes equations, and, more generally, the eq
tions of continuum mechanics are nonlinear. More precis
in the simplest cases, the nonlinearities are quadratic
originate in the advective terms of the material time deri
tives. For this reason, when a spatial structure appears in
solution of these equations, its second-order harmonics
directly excited through the quadratic terms and may in
ence the observed pattern. An interesting illustration of
influence of the second-order harmonics has been rece
presented by Regnieret al. @5# who examined the interfac
deformations of an hexagonal pattern in coupled grav
driven and capillary thermoconvection. They showed t
when the depth of the fluid layer is such that the deform
tions of the upper free surface due to gravity and due
capillarity exactly compensate for the linearly unstab
mode, the interface relief in the nonlinear regime is de
mined by the second-order harmonics only~‘‘hybrid’’ relief !.

One motivation of the present work is the experimen
evidence of the appearance of not only second-, but
third-order harmonics in a thermoconvective roll pattern
the RB problem. This problem has already been approac
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by several authors in the past~see, for instance,@7# and ref-
erences therein!. In @8#, experimental results are reported a
a perturbation analysis limited to third-order terms and ba
on the Malkus-Veronis approach@9,10# is presented and
compared with experiments. Pure numerical calculations@11#
and a double Fourier expansion inx andz combined with a
Galerkin method@7# are also shown to display the appea
ance of the second- and third-order harmonics of the b
sine roll pattern.

In this paper, we propose an extension of the amplitu
method used in many nonlinear studies on thermoconvec
~see@2# and references therein!. From a theoretical point of
view, the original amplitude method is valid only asympto
cally close to the linear stability limit. Unfortunately, thi
method has sometimes been used to analyze nonlinea
gimes that are not close to the threshold. For instance,
depth of the subcritical convection domain in Marango
convection and the transitions between rolls, hexagonal c
and square patterns were determined in this context@3–5#.
The value of the control parameter corresponding to th
bifurcations is not always small, which makes these res
questionable, from a quantitative, but also from a qualitati
point a view.

In this paper, we develop an extended amplitude form
ism to allow a rigorous analysis of convection further fro
the linear threshold. For simplicity and clarity, the forma
ism, which is based on an iterative algorithm, is presen
here through a detailed analysis of Rayleigh-Be´nard thermo-
convective rolls in the nonlinear regime. More precisely,
show that the extended method permits us to account in
easy way for the experimental observations of the sec
and third spatial harmonics. The validity of the method
from the threshold is checked by confronting it to expe
mental data and also direct numerical simulations.

Our experimental set-up is described in details in@12#. Let
us summarize the description of the apparatus~Fig. 1!. A
finite rectangular container with dimensions 123331 cm3

is filled up with a Rhodorsil 47V100 silicone oil and heate
©2001 The American Physical Society01-1



re
B
th

er
V.
ol
ic
v

b
ho
la
n
e
a
a

ar
l-

ec
o
e
su
h

d
d

io
ng

rm

is
nt

a

n

e

at

m-
the
ding

m
that
bers

s-

-

e
ber

li-
nce,
t-

gen-
o-
of
al
are
the
ter.

ith

um
ave
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from below. The upper and lower boundary of the fluid a
two horizontal glass plates with a thickness of 0.3 cm.
measuring the deflection of a laser beam shining through
fluid, the overall horizontal temperature gradient is det
mined @12#. The velocity field is also measured using PI
For a relative distance to the linear convective thresh
slightly larger than 1, second- and third-order harmon
clearly appear in the horizontal temperature gradient and
locity field.

In Sec. II, the basic governing equations for the RB pro
lem are recalled and the classic nonlinear amplitude met
is briefly described. Section III contains a qualitative exp
nation of the presence of secondary harmonics based o
amplitude model with only four modes. In Sec. IV, w
present the extended amplitude method, which is the m
result of the paper. It consists in a precise strategy to build
amplitude model valid even far from threshold. We comp
the solution given by this model with direct numerical ca
culations. We show that in the specific case of RB conv
tion, a model with 11 amplitude equations gives very go
quantitative agreement with numerics. We present our
perimental results in Sec. V and again compare these re
with the solution of our model. Conclusions are drawn in t
last section.

II. BASIC EQUATIONS AND BASIS OF THE NONLINEAR
METHOD

Let us consider, for simplicity, a horizontally infinite flui
layer that is contained between two rigid horizontal boun
aries. The equations for this system are well known@1,2#.
When the Boussinesq hypotheses hold, the perturbat
with respect to the conductive solution obey the followi
set of partial differential equations:

“•u50, ~1!

Pr21@] tu1~u•“ !u#52“p1“

2u1RaTez , ~2!

] tT1u•“T2w5“

2T. ~3!

We have chosen the verticalz axis in the direction opposite
to gravity. The equations are written in a dimensionless fo
with lengths scaled by the thicknessd of the liquid layer. The
time scale isd2/k, with k the heat diffusivity of the liquid.
The velocity is scaled byk/d and the temperature scale
chosen asbd, whereb is the vertical temperature gradie
that would exist in a purely conductive state. Symbolsu
5(u,v,w), p, and T represent the dimensionless perturb
tions~with respect to the conductive solution! of the velocity,
pressure, and temperature fields. The Rayleigh and Pra
numbers Ra and Pr are defined as

FIG. 1. Sketch of the experimental setup
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Ra5
gabd4

nk
, ~4!

Pr5
n

k
, ~5!

where n and a are the liquid kinematic viscosity and th
coefficient of thermal expansion, respectively.

The boundary conditions for the velocity perturbations
the bottom (z50) and at the top (z51) of the layer express
the no-slip condition along the horizontal plates. For the te
perature perturbations, a general Biot condition describes
heat exchanges through the boundaries. The correspon
equations are

u50 at z50 and atz51, ~6!

2
]T

]z
1Bi0 T50 at z50, ~7!

]T

]z
1Bi1 T50 at z51, ~8!

where Bi0 and Bi1 denote the Biot numbers at the botto
and the top of the layer, respectively. In the experiments
we are considering in the present paper, these Biot num
are equal since the glass plates atz50 and z51 are the
same. The value Bi546 is determined by using the expre
sion @13# Bi5(lwall /l)@kc /tanh(kcdwall /d)# where lwall
51.74 Wm21K21 anddwall50.3 cm are the heat conduc
tivity and thickness of the glass plates, whilel
50.16 Wm21K21 is the heat conductivity of the silicon
oil. The corresponding dimensionless critical wave num
and Rayleigh numbers are given bykc53.07 and Rac
51653, respectively~a standard spectral-tau method@14,15#
was used for the calculations of the critical parameters!.

The starting point of our nonlinear method is the amp
tude method that has been described in details, for insta
in @3,2#. Two-dimensional rolls are the only convective pa
tern observed in the present experiments, therefore, the
eral three-dimensional method is simplified here into its tw
dimensional~2D! counterpart. Let us recall the main steps
the method. First, the Rayleigh number is fixed to its critic
value Rac and the eigenmodes of the linearized equations
numerically determined by a spectral tau method, with
growth ratesp of the perturbations as eigenvalue parame
Using complex notations, the 2D eigenfunctions are

uk,p5Up~z!exp~ ikx!exp~spt !, ~9!

Tk,p5up~z!exp~ ikx!exp~spt !, ~10!

wherek is the horizontal wave number andx the horizontal
coordinate. It is important to note that for each value ofk, an
infinite set of eigenvalues exists for the growth rate, w
corresponding vertical eigenfunctionsUp(z) and up(z) for
the velocity and temperature perturbations. The maxim
value of the growth rate is zero and corresponds to a w
number equal to the critical valuekc . The indexp runs from
1-2
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AMPLITUDE EQUATIONS FOR RAYLEIGH-BÉNARD . . . PHYSICAL REVIEW E64 066301
one to infinity and numbers the negative growth rates, wh
are assumed to be ordered in such a way that the real pa
sp decreases withp ~for k5kc , one hass150!. The eigen-
modes are normalized in such a way that the maximum va
of the modulus ofup(z) is equal to 1.

The solution of the nonlinear equations is then expres
as the following series depending on the eigenmo
(uP ,TP):

S u

TD 5( AP~ t !S uP

Rac

Ra
TP
D 1c.c. ~11!

whereP is written for k,p, and theAP(t) are the complex
time-dependent amplitudes. It is worth emphasizing that
spatial functions used in this decomposition are not exa
the eigenmodes of the physical problem, due to the resca
factor Rac /Ra. However, for each value of Ra, these fun
tions uP and ~Rac /Ra)TP may be considered as the eige
modes of a ‘‘mathematical’’ eigenvalue problem, which
easily obtained from the original problem by letting this fa
tor explicitly appear. These spatial modes may thus be c
sidered as independent. It may also be checked that the
joint eigenmodes of this problem are given b
(uP

! ,(Ra/Rac)TP
! ), where the (uP

! ,TP
! ) are the adjoint eigen

modes of the original problem. From a more physical po
of view, the introduction of the rescaling factor Rac /Ra in
Eq. ~11! may be justified by noting that the temperature sc
used in Eqs.~1!–~3! is bd while the ‘‘critical scale’’bcd is
used to determine the eigenmodes~10!. When the unknown
fields are written under the form~11!, the incompressibility
Eq. ~1! and the boundary conditions~6!–~8! are automati-
cally satisfied. The series~11! is then introduced in Eqs
~2!–~3!, which are then projected on the adjoint eigenfun
tions of the ‘‘mathematical’’ problem introduced above. T
momentum equation is thus multiplied byuP

! , the velocity
field of the adjoint eigenvalue problem and the energy eq
tion is multiplied by (Ra /Rac)TP

! , with TP
! the temperature

field of the adjoint eigenvalue problem. Both relations a
added and integrated over the fluid volume. When the b
thogonality relations between the solutions of the eigenva
problem and its adjoint are used, together with the inco
pressibility condition and the boundary conditions, we g
the following evolution equations for the amplitudes:

dAP

dt
5sPAP1e(

Q
M PQAQ1(

Q,L
NPQLAQAL . ~12!

In this equation,e5(Ra2Rac)/Rac is the relative distance to
the threshold and the matricesM andN are given by

M PQ5
^uP

!wQ&

^uP
!uP1Pr21uP

!
•uP&

, ~13!

NPQL52
^uP

! ~uQ•¹uL!1Pr21uP
!
•@~uQ•¹!uL#&

^uP
!uP1Pr21uP

!
•uP&

, ~14!
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where the angular bracket is used to denote integration o
the fluid volume.

Using a slaving principle@16,17#, the infinite dimensional
set of Eqs.~12! may be reduced to a finite number of ord
nary differential equations for the amplitudes of the mo
unstable modes of convection. The procedure leading to
reduced system may be briefly summarized as follows. F
the infinite number of eigenmodes is split into two categ
ries. The ‘‘basic’’ modes are the most unstable modes, w
the real part of the growth rates close to zero while
‘‘slaved’’ or ‘‘stable’’ modes are quite damped, due to qui
negative values for Re(sP). These slaved modes are prese
in the solution only as the quadratic response to the nonlin
growth of the basic modes above the threshold and their o
dynamics may be neglected. For this reason, the time der
tive is set to zero in the evolution Eqs.~12! for their ampli-
tudes. This results in an algebraic relation between the b
and slaved amplitudes. When the amplitudes of the sla
modes are small with respect to the basic ones, the quad
terms of these algebraic equations containing only dam
modes may be neglected and the following expression of
slaved amplitudes in terms of the basic ones may easily
deduced:

APs
52

1

sPs

(
Q,L

NPsQLAQAL , ~15!

where the subindexs indicates that a slaved mode is consi
ered. In the right-hand side~r.h.s.! of Eq. ~15!, the indicesQ
andL refer to basic modes only. Note that this relation, bas
on the smallness ofAPs

, is always correct close to the thres
old where the amplitudes of the basic modes can be assu
sufficiently small~at least when the bifurcation is supercrit
cal, which is actually the case for rolls!.

Expressions~15! for the amplitudes of the slaved mode
may then be introduced in the evolution Eqs.~12! for the
basic modes. If terms of order higher than three are
glected, the following final ‘‘amplitude equations’’ for th
amplitudes of the basic modes are obtained:

dAP

dt
5sPAP1e(

Q
M PQAQ1(

Q,L
NPQLAQAL

1 (
Q,L,R

TPQLRAQALAR . ~16!

In this relation, all amplitudes and indices correspond to
sic modes only and the definition of the matrixT is easily
deduced from the context. Note also that in practice onl
finite number of slaved modes is considered to deduce
~16!. Equations~15! show that the amplitudes of the slave
modes decrease withp since the modulus of the growth rat
increases withp. In the RB problem, the numberNsl(k) of
slaved modes that are taken into account for each valuek
is limited to four or five, which is sufficient to ensure con
vergence of the coefficients of the amplitude equations
shown in@3# and checked again in this paper.

To finish this section, let us recall that the Eqs.~16!
should be considered as a valid model for the nonlinear c
1-3
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vection only if the slaved amplitudes remain small. Oth
wise, terms of order higher than three should be taken
account.

III. SECOND- AND THIRD-ORDER HARMONICS IN THE
NONLINEAR REGIME

The simplest model of nonlinear roll convection consi
in a unique amplitude equation for the linearly unsta
mode. The quadratically generated slaved modes are the
modes (p>1) with k50 and k523kc . Since the modes
with k533kc are absent from the description, this model
unable to provide any account of the presence of the t
harmonics observed in experiments and obviously has to
extended.

To describe this experimental evidence, we must incre
~first in a heuristic way! the number of modes entering th
amplitude Eq.~16!. This amounts not to use the simplifie
representation~15! for some of the slaved and quadradica
generated modes but rather include them in the basic mo
Here as basic modes we take not only the critical one
also the three modes withk50, 2, and 33kc , andp51. The
first two additional modes are the direct quadratic respo
to the nonlinear growth of the critical mode while the mo
with k533kc is present because of the quadratic inter
tions of the two modesk51 and 23kc . This choice of the
basic modes is dictated by the experimental observations
may be considered as somewhat arbitrary from a theore
point of view. However, in the next section, we develop
precise strategy to select the necessary basic modes.

The modes that are generated by the quadratic interac
of these four basic modes, which we call secondary mo
consist of the eigenmodes withk50, 1, 2, or 33kc and p
.1 as well as all the modes (p>1) with k54, 5, and 6
3kc . The real part of the growth rate for these second
modes is of course negative and their dynamics is neglec
If a simplified expression~15! is used to express the secon
ary modes, four amplitude equations~16! may be determined
for A05A03kc,1 , A15Akc,1 , A25A23kc,1 , and A3

5A33kc,1 .
The stationary solution of these equations is then use

reconstruct the unknown fields and represent the velocity

FIG. 2. Stream function~thick lines! and temperature field~thin
lines! in a plane perpendicular to the rolls fore52.91.
06630
-
to

s

all

d
be

se

es.
ut

e

-

nd
al

ns
s,

y
d.

to
d

temperature in the fluid layer as shown in Fig. 2. The def
mation of the rolls due to the presence of secondary harm
ics is clearly seen in the picture. In order to interpret t
results of our measurements for the horizontal tempera
gradients, we also plot in Fig. 3 the reconstructed horizon
temperature gradient]xT at z50.45 for e50.1, 1.19, 1.69,
and 2.91~again obtained using the four amplitudes mode!.
Close to the threshold, the curve is almost a sine funct
while it becomes more and more deformed ase is further
increased. The deformations are due to the increasing im
tance of the second and third harmonics of the modek5kc.
In particular, for the horizontal temperature gradient, t
third harmonics appears clearly fore close to 1.19. It is also
interesting to note that due to the symmetry of the phys
system with respect toz50.5 the second harmonics disa
pears at midheight, as one can see in Fig. 4 where the l
extrema due to the third harmonics have all the sa
abscissa.

IV. GENERALIZED AMPLITUDES METHOD AND
COMPARISON WITH NUMERICAL CALCULATIONS

The results given in the previous section are in go
qualitative agreement with experiments and numerical sim
lations. However, it is possible to improve further, i.e., al
get a quantitative agreement. In this section, we build a p
cise strategy to select the relevant modes that enter the
plitude equations.

The method developed in Sec. II and leading to Eq.~16!
is valid only when the quadratically generated second
modes have small amplitudes. Whene is increased, this con
dition is not satisfied and the model is no longer accurat

Let us first consider a unique amplitude equation for
linearly unstable mode. For the largest value ofe that we
have to deal with in the problem~this value is around three
in our case!, we solve the amplitude equation and determ
the value of the amplitude of the basic mode. Then, we c

FIG. 3. Dimensionless horizontal temperature gradient]xT ver-
susx at z50.45 and fore50.1, 1.19, 1.69, and 2.91.
1-4
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AMPLITUDE EQUATIONS FOR RAYLEIGH-BÉNARD . . . PHYSICAL REVIEW E64 066301
culate the values of the secondary amplitudes using Eq.~15!
and check the consistency of the results with the fact that
amplitudes of the secondary modes must remain small w
respect to the amplitudes of the basic ones. If a secon
amplitude is larger than some small fraction (1022 in our
calculations! of the largest amplitude of the basic mode
then we have to include this mode in the basic modes in
next model. This procedure is in fact equivalent to consid
ing terms of order higher than three in Eq.~16! but is much
easier. After determining the basic modes of the model,
secondary modes are determined as before: their horizo
wave numbers are equal to the sum or the difference of
two wave numbers of the basic modes. Moreover, for e
value of k, it is sufficient to fix Nsl(k)54 or 5 to have
convergence of the cubic coefficients of the amplitude eq
tions. This iterative improvement of the model is repea
until all secondary modes have small amplitudes. In the
problem studied in this paper, this iterative scheme result
a ‘‘generalized’’ 11 amplitude equation model, with, respe
tively, 3, 3, 2, 2, and 1 equations for the amplitudes of
most unstable modes withk50, 1, 2, 3, and 43kc .

The comparison of our theoretical approach and num
cal calculations is presented in Fig. 4 where the horizon
temperature gradient is given as a function ofx for z50.5
and for different values ofe (e50.1, 1.19, and 2.91). The
solid curves correspond to the 11 amplitude equation mo
while the results for four equations are represented with d
ted lines. Whene is not too large, the two curves coincid
almost perfectly as expected. Far from threshold, the dif
ence becomes significant. We have performed a direct
merical simulation of Eqs.~1!–~3! using theAQUILON code
~finite volumes PDE solver developed at the MASTE
ENSCPB, Bordeaux, France! for «52.91 and the results ar

FIG. 4. Dimensionless horizontal temperature gradient]xT ver-
susx at z50.5 and fore50.1, 1.19, and 2.91. The dotted and so
lines have been calculated by using 4 and 11 amplitude equat
respectively. The dots correspond to direct numerical calculat
~AQUILON code!.
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represented by the dots in Fig. 4. The agreement between
direct numerical simulations and the 11 amplitude equat
model is excellent and provides a confirmation of the valid
of the generalized amplitude equations far from thresho
The iterative procedure is very appealing because it give
much better understanding of which are the physical relev
convective modes.

V. COMPARISON WITH EXPERIMENTS

We have carried out different experiments to validate
extended amplitude equation model. For each given exp
mental situation, the value ofe has been determined in term
of the thermophysical parameters and the applied temp
ture difference between the top and bottom glass plates.
temperature difference across the fluid layer is measured
thermocouples located at the top and bottom surfaces of
fluid. Since the estimated Biot number is very large (
546), the top and bottom plates are almost perfect heat c
ductors and the conductive temperature differencebd is al-
most equal to the experimental temperature differen
Therefore, the experimental Rayleigh number~4! is evalu-
ated directly in terms of the temperature measurem
The coefficient of thermal expansion of the Rhodor
47V100 silicone oil used in experiments isa59.5431024

K21. The thermal conductivity was given above (l50.16
Wm21K21) and the specific heat at constant pressure
c51454.4 J K21kg21. Since the experiments are carried o
in different temperature ranges, the variations of the den
and viscosity withT are taken into account, and we take t
value corresponding to the mean temperature of the exp
ment. The phenomenological laws for these variations
given by r5988(12aT) and ln@ln(106n)#521.927
31023T10.34921, wheren is the kinematic viscosity and
whereT in the last expressions is the temperature in Cels
~it gives Pr'880). Using the thermophysical properties a
the measured temperature difference, we determine the
perimental Rayleigh number. The relative distance to
thresholde5(Ra2Rac)/Rac is calculated by using the criti
cal Rayleigh number 1653 previously determined in Sec.
Data from four different experiments were collected in whi
the temperature at the bottom of the fluid was fixed to 2
10, 20, and 40 °C and the temperature differences were 2
5.7, 5.7, and 5.7 °C, respectively. The corresponding val
of the relative distance to the threshold aree50.10, 1.19,
1.69, and 2.91, respectively. In all experiments, ten rolls p
allel to the shorter sides were observed. It is well known t
the wavelength increases in the nonlinear regime but in
confined problem we consider, with rather small aspect ra
and for rather small values ofe, the number of rolls is mainly
determined by the geometry@8,18#. The measured wave
number of the eight inner rolls was 2.67~in dimensionless
units! and the coefficients of the amplitude equations w
recalculated using this experimental value. The compari
between the experimental data for the different values oe
given above and the theoretical predictions is presente
Figs. 5 and 6, where all quantities are expressed in~dimen-
sional! SI units. In Fig. 5, the horizontal temperature gradie
is represented at midheight of the layer as a function of

s,
s

1-5
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P. C. DAUBY, TH. DESAIVE, J. BRAGARD, AND P. CERISIER PHYSICAL REVIEW E64 066301
horizontal coordinate. The vertical velocity is displayed
Fig. 6. The solid lines correspond to the predictions of our
amplitude equation model while the different symbols rep
sent the experimental data. The agreement between
model and the experiments is very good. Besides experim
tal error bars, the small discrepancies may be attribute
the fact that the experimental rolls are not perfectly tw
dimensional while our theory does not account for thr
dimensional effects and for spatial variations of the therm
physical constants ~computed here at the averag
temperature!. It is interesting to note that the agreement
excellent for the velocity because the corresponding m
surements were carried out in the middle of the box, wh
the convection is almost 2D. On the contrary, the experim
tal determination of the temperature gradients is based o
integral method along the rolls@12#, for which the 3D as-
pects of the motion at both sides of the rolls have so
importance.

VI. CONCLUSION

We have shown how the amplitude method, whose va
ity is theoretically limited to the rather close neighborhood
the convective threshold, may be extended for larger va
of e. An a posteriori test of the validity of the results ha

FIG. 5. Dimensional~SI units! horizontal temperature gradien
]xT versusx at midheight and fore50.1, 1.19, 1.69, and 2.91. Th
solid curves correspond to the results of the 11 amplitude mo
with k52.67, while the differents symbols represent the experim
tal data~see text for details about the experimental conditions!.
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been provided, which consists of controlling the smallness
the amplitudes of the secondary modes. If these amplitu
are not small, the corresponding modes must be include
the basic modes and an additional amplitude equation m
be considered. This procedure was used to analyze Rayle
Bénard convective rolls and the results were compared
direct numerical calculations as well as to experiments.
both cases, the agreement is excellent. Besides the gen
ized amplitude equation technique, our work provides
analysis of the appearance of spatial harmonics of the b
sine pattern in a convective flow and the actual interacti
between the different modes are clearly emphasized.
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FIG. 6. Dimensional~SI units! vertical velocityw versusx at
midheight and fore50.1, 1.19, and 2.91. The solid curves corr
spond to the results of the 11 amplitude model withk52.67, while
the different symbols represent the experimental data.
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