
Study of type-III intermittency in the
Landau-Lifshitz-Gilbert equation

J. Bragard1, J. A. Vélez2, J. A. Riquelme3, L. M. Pérez2, R.
Hernández-García4,5, R. J. Barrientos4,6, and D. Laroze2,∗
1 Departamento de Física y Matemáticas Aplicadas, Universidad de Navarra, Pamplona
31080, Spain.
2 Instituto de Alta Investigación, CEDENNA, Universidad de Tarapacá, Casilla 7 D, Arica,
Chile.
3 Instituto de Alta Investigación, Sede Esmeralda, Universidad de Tarapacá, Av. Luis Emilio
Recabarren 2477, Iquique, Chile.
4 Laboratory of Technological Research in Pattern Recognition (LITRP), Universidad
Católica del Maule, 3480112 Talca, Chile.
5 Research Center for Advanced Studies of Maule (CIEAM), Universidad Católica del
Maule, 3480112 Talca, Chile.
6 DCI Department, Faculty of Engineering Sciences, Universidad Católica del Maule,
3480112 Talca, Chile.

E-mail: ∗dlarozen@uta.cl

Abstract. We have studied a route of chaos in the dissipative Landau-Lifshitz-Gilbert
equation representing the magnetization dynamics of an anisotropic nanoparticle subjected
to a time-variant magnetic field. This equation presents interesting chaotic dynamics. In
the parameter space, for some forcing frequency and magnetic strength of the applied
field, one observes a transition from a regular periodic behavior to chaotic dynamics. The
chaotic dynamics, close to the bifurcation, are characterized by type-III intermittency. Long
epochs of quasi-regular dynamics followed by turbulent bursts. The characterization of the
intermittencies has been done through four different techniques. The first method is associated
with the computation of the Lyapunov exponents that characterize the chaotic regime. The
second and third methods are associated with the statistics of the duration of the laminar epochs
prior to a turbulent burst. The fourth method is associated with the subharmonic instability
present in those laminar epochs and quantified through a Poincaré section method. At the end
of the manuscript, we compare the result obtained by the different techniques and discuss the
methods’ limitations.
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1. Introduction

There are multiple routes to chaos [1–5]; perhaps the
best-known mechanism is the period-doubling in which a
cascade of bifurcations leads to chaotic states [4]. One
notable route is the Ruelle-Takens-Newhouse scenario [6,
7], which essentially consists of an instability of a quasi-
periodic state. Yet, another route appeared in the study
of fluids and another physical systems, which is called
Intermittency [1]. A seminal article by Manneville and
Pomeau [8] described this new mechanism in the Lorenz
system. They found these intermittencies when the reduced
Rayleigh number is large, for values just above 166 [8,
9]. This chaotic route is characterized by an irregular
alternation between long epochs of quasi-regular dynamics
and turbulent bursts.

One distinguishes three types of transition to intermit-
tency [10]. In all cases, we have a limit cycle (LC) that
is stable before the transition and becomes unstable when
a system’s parameter is brought past the bifurcation thresh-
old. The limit cycle’s linear stability (Floquet theory) shows
that the limit cycle can become unstable through three types
of instability. The classification between intermittency of
type I, II, and III relies on how the Floquet multiplier is
crossing the unit disk in the complex plane. For inter-
mittency of type I, the Floquet multiplier crosses the disk
through +1. For type II, they are two complex conjugate
multipliers that cross the unit disk through complex val-
ues. For intermittency of type III, the multiplier crosses
the disk through -1. For intermittencies of type II and III,
the bifurcation is always subcritical, which means that the
weakly non-linear effects tend to increase the instability. In-
termittency states were experimentally observed first in the
Rayleigh-Benard convection [10] and later in several other
dynamical systems [11–16]. Intermittencies have been ob-
served in complex chemical reactions [17], electrochemical
oscillators [19], quasi-periodically driven systems [18], or
in thermoacoustic systems [20], to cite a few. Other studies
on the subject can be found in Refs. [21–33].

The magnetization dynamics are inherently nonlinear,
and complex states have been observed [34]. Indeed,
several routes to chaos have been found for non-dissipative
spin chains [35]. Studies of the chaos in magnetic
systems using modern quantification techniques such as
the Lyapunov exponents have been done in the context of
the Landau-Lifshitz-Gilbert equation and its generalization.
Those works can be found in Refs. [36–69]. Recently,
theoretical-experimental research in nanomagnets in the
monodomain regime have shown chaotic behaviors under

the action of an electric current [70]. This study
opens new venues to explore the complexity of magnetic
nanostructures. From the theoretical point of view,
two-dimensional phase diagrams of the largest Lyapunov
exponent computed as a function of the system’s parameters
have been used to characterize the transitions between
chaotic and regular states in magnetic nanoparticles [71].
The characterization of the route to chaos that occurs past
the threshold has not yet been analyzed in depth.

The present work aims to examine a specific route
to chaos for a parametrically driven anisotropic magnetic
nanoparticle described by the Landau-Lifshitz-Gilbert
(LLG) equation. In particular, we focus on the type-III
intermittency dynamics that is observed in some region
of the parameter space. The novelty lies in the fact
that the magnetization has two limit cycles that are
becoming unstable for the same bifurcation parameter
due to a particular symmetry of the dynamical system
that induces degeneracy. We found out that this issue
does not substantially modify the type-III intermittency
characteristics as long as we can distinguish between the
two limit cycles. We characterize the regular to chaotic
transition using several tools like the Lyapunov exponents,
Poincare sections, and statistical distributions of the laminar
epochs that exist prior to the turbulent bursts. The
instability threshold is estimated with a very high degree of
precision through four different methods. The manuscript
is structured as follows: In Section 2, we describe the
theoretical model. Section 3 is devoted to numerical results
and discussions of the type-III intermittency. The summary
of the different methods to characterize the bifurcation
threshold is presented in Section 4. Finally, the conclusion
and some future perspectives are outlined in Section 5.

2. Theoretical model

Let us suppose that a magnetic particle is represented by a
magnetic monodomain [34, 70], such that its magnetization
is depicted by a magnetization vector M = M(t). The
dimensionless LLG equation determines its evolution:

κ
dm

dτ
= −m× heff − αm× (m× heff ), (1)

where m = M/Ms = (mx,my,mz) and τ = t|γ|Ms.
Here γ is the gyromagnetic factor, which is associated with
the electron spin and its numerical value is |γ| = |γe|µ0 ≈
2.21 × 105mA−1s−1, Ms is the saturation magnetization
and κ = 1 + α2, such that α is the dimensionless
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dissipation coefficient. Typical orders of magnitude 10−2

or greater for cobalt, nickel or permalloy (Ni80Fe20)
[34]. For cobalt materials, the experimental value of the
saturation magnetization is, Ms[Co] ≈ 1.42 × 106A/m ≈
17.8 kOe, implying that time scale is (|γ|Ms[Co])

−1 ≈
3ps. In the case of magnetic materials with less saturation
magnetization one can increase the time scale, like in the
case of Nickel nanoparticles. Let us remark that this scaling
of the variables leads to |m| = 1, which is a conserved
quantity of the dynamical system Eq. (1). This constraint
can be used to monitor the accuracy of the numerical
simulations.

The effective field, heff , has a contribution from
Zeeman and anisotropy energies. We consider that the
external magnetic field has a harmonic time dependence as
well as a constant term, such that they are perpendicular.
Then, heff can be written as [71]:

heff =
(
hx sin(Ωτ) + βxmx

)
x̂ +

(
hy sin(Ωτ) + βymy)ŷ

+
(
hz + βzmz

)
ẑ,

(2)

where (hx, hy, hz) are the dimensionless field amplitudes,
Ω is the dimensionless frequency of the driven field, and
the coefficients (βx, βy, βz) measure anisotropies. The
dimensionless quantities are related with the physical ones
by h = H/Ms and Ω = ω/(γMs). Standard values
for the amplitude and frequencies are in the range of
100 − 101 kOe and GHz, respectively [57, 66, 70]. On
the other hand, the anisotropies consider the fact that
the magnetic properties depend on the direction that is
measured [72]. The anisotropies are due to several factors
as, e.g., the crystalline, magneto-elastic, or the shape effects
[34,72]. We point out that the magnetic anisotropy modifies
the magnetic particles’ dynamical behavior because it
introduces intrinsic nonlinearities in the LLG equation
[56, 64, 71]. Besides, let us remark that the system is non-
autonomous because the external field is time-dependent.

2.1. Regular - Chaotic transitions

This nonlinear system has both dissipation and injection
of energy, and therefore multiple behaviors are expected
to appear. Indeed, recent works in the LLG equation
regarding chaotic states can be found in Refs [36, 44, 48–
50, 56]. One of the conventional methods to characterize
the magnetization dynamics is through Lyapunov exponents
[4, 73, 74], which quantify the divergence between
infinitesimal closed trajectories. For a N-dimensional
system, dY/dτ = F(Y, τ), these exponents can be
computed as

λi = lim
τ→∞

[
1

τ
ln

(
|δYi(τ)|
|δYi(0)|

)]
, (3)

where δYi are solutions of the variational equation

δY
dτ

= J · δY, (4)

such that Jab = ∂Fa/∂Yb. The exponents can be ordered in
descending manner, λ1 > λ2 > ... > λN , with λ1 being
the largest Lyapunov exponent (LLE). If LLE is positive
(λ1 > 0) the state is chaotic, while if it is negative or zero
(λ1 6 0) the states are regular [4].

Let us remark that to ensure that the numerical
solutions are accurately integrated, we use a modified
fourth-order Runge-Kutta method that conserves the norm,
|m| = 1, with a fixed time step of ∆τ = 0.01. The
Lyapunov spectrum is calculated by integrating the original
dynamical system Eqs. (1) and three copies of the linearized
dynamical equations to get the three Lyapunov exponents.
The initial vectors for the linearized systems are ortho-
normal, but they do not stay ortho-normal upon integration
due to the chaotic dynamics. One must apply the Gram-
Schmidt orthogonalization procedure periodically (here,
we renormalize every τ = 1 unit). The integration for
determining the Lyapunov exponents has been continued
for a time of τ = 225. These very long simulations allow
minimizing the error on the computed exponents. The
typical standard error on the maximum Lyapunov exponent
was approximately equal to 8.6 × 10−5. The detail of the
method for computing the Lyapunov spectrum can be found
in the reference textbook by Gould & Tobochnik [76].

Figure 1: Largest Lyapunov exponent as a function of hx
for different values of Ω. The fixed parameters are: hy = 1,
hz = 3.52, βx = 4, βy = 0, βz = −1 and α = 0.05.

In what follows, most of the parameters of Eqs. (1)
will be fixed throughout the paper except for the parameters
hx and Ω. The rest of the parameters are fixed to: hy = 1,
hz = 3.52, βx = 4, βy = 0, βz = −1 and α = 0.05. Figure
1 show the Largest Lyapunov exponent as a function of hx
for different values of Ω. We can observe that for all the
values of Ω, the LLE becomes zero after a critical value of
the hx. Also, we observe that the LLE close to the transition
decays almost linear, nevertheless far from the transition, its
dependency becomes non-linear.

Figure 2 shows the behavior critical value of field in
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Figure 2: Critical value of field in which the Largest
Lyapunov exponent becomes zero, h(c)x , as function of Ω.
The rest of fixed parameters are the same of Fig. 1.

which the LLE becomes zero, h(c)x , respect to the frequency
Ω. We can notice that h(c)x has a polynomial dependence
with Ω given by h

(c)
x ≈ −388.505Ω3 + 1155.56Ω2 −

1145.55Ω + 378.911. In the next section, we study the in
detail the transition from periodic to chaotic behavior that
occurs for hx ≈ 0.418 and Ω = 1.

3. Evidences for type-III intermittency in the LLG
equation

This section will illustrate through numerical integration
of Eq. (1) the transition between periodic into a special
type of chaotic behavior. In particular, we will show
that the chaotic behavior observed is indeed of the type-
III intermittency as explained in the Pomeau-Manneville
theory [1]. When decreasing the main bifurcation
parameter hx below the threshold value h

(c)
x ≈ 0.418

(threshold value will be determined accurately later) two
limit cycles become unstable through a period-doubling
instability, and one observes a chaotic behavior for hx <

h
(c)
x .

Let us remind the dynamical characteristics that
are a positive sign of type-III intermittency: First, the
positive Lyapunov exponent in the chaotic regime decays
linearly towards zero when approaching the threshold
value. Second, the unstable Floquet multiplier associated
with the periodic solution crosses the unit disk through
the real value -1 at the threshold value. Thirdly, the
distribution of the laminar periods that are alternating
between turbulence bursts follows a well-known statistical
distribution with a characteristic exponential tail. The
distribution tail size is directly related to the distance to the
threshold in intermittencies of type-III. Fourthly, the second
return map (in a Poincaré section) in the unstable regime
displays a subharmonic mode growth. The second return
map has a characteristic cubic functional form close to the
instability threshold. The linear coefficient of the return

map is directly proportional to the distance to the threshold
value [21].

0
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0.5
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z
 

 m
y
 

0

1

1
0.5

 m
x
 0-0.5

-0.5
-1

Figure 3: Phase space of the LLG equations. Coexistence
of the two unstable periodic solutions for hx = 0.415 and
Ω = 1. The rest of the parameters are the same of the Fig.
1.

Figure 3 illustrates the two coexisting limit cycles
close to the bifurcation. In Fig. 3, the bifurcation parameter
is set to hx = 0.415, and the two limit cycles are slightly
unstable. The coexistence of the two limit cycles is due to
a degeneracy of the LLG equation Eq. (1). The symmetry
relations to map one periodic solution to the other are as
follows:

mz ←→ mz

my ←→ −my

mx ←→ −mx

τ ←→ τ + π/Ω

As it is known [1], the laminar periods (epoch periods)
between turbulent bursts are longer as the dynamical system
is brought closer to the bifurcation. We have performed
very long simulations of over 24 million of the signal’s
basic period to get enough data to perform reliable statistics.
In Fig. 4, we show an extract of a time series of the first
component of the LLG equation mx as a function of time.
Here and throughout the paper, time is expressed in units
of the basic period T = 2π/Ω. Also shown in Fig. 4 is
the definition of one laminar period (or epoch time) kT
between two consecutive turbulent bursts, which will also
be measured in period unit time. Because the time series
are very long, we have found that a better visualization of
the signal is obtained when averaging the signal over a time
period as indicated by the red curve < mx > in Fig. 4.

Contrary to the classical type-III intermittency, where
a single limit cycle loses its stability through period-
doubling. In the present case (due to the system’s
degeneracy), we have the coexistence of two limit cycles
that are becoming unstable by period-doubling at the
bifurcation threshold. It means that the relaminarisation
phase during the turbulent burst can bring back the system
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Figure 4: Time series of the component mx (blue) and the
moving average < mx > (in red). The average window
width corresponds to one period T . The time scale is given
in period unit time. The definition of an epoch time kT
is also illustrated. Here hx = 0.415 and the rest of the
parameters are same of Fig. 3.

close to any of the two limit cycles. This is well illustrated
in Fig. 4, where after the turbulent burst, the system jumps
either towards the other limit cycle or the former limit cycle.

At this stage, it becomes clear that the mere definition
of the laminar periods has to be clarified. One approach
uses the moving average signal and defines a transition
when the moving average is crossing the zero line. Indeed,
as shown in Fig. 4, the two unstable limit cycles have
average values over a cycle comparable to ±0.4. Each
time that the moving average is crossing the zero line, we
reset the laminar counter and start a new laminar epoch. A
second approach, more refined, is to consider all the four
possibilities for the transition as they actually happen in the
system. This will be considered in more detail in section
3.2.
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Figure 5: Successive epoch durations kT as a function of
the epoch numbers extracted from two very long time series
(24 million of periods) as shown in Fig. 4. The upper panel
(a) corresponds to a time series with hx = 0.415 and the
lower panel (b) corresponds to hx = 0.417. Note that the
vertical scale of the lower panel is one order of magnitude
larger than for the upper panel.

3.1. Strong event transitions

In this subsection, we will first consider the more straight-
forward definition for the transition between different
epochs as crossing the zero line of the average signal. This
description is a simplification of the actual transitions that
are occurring in the system (as shown in Fig. 4), but of-
ten, in an experimental setup, one does not have access to
the full information of the dynamics and a precise defini-
tion of the laminar periods is not accessible. Therefore, this
first method has interest on its own in the case of exper-
iments where not all the information is readily available.
We name these transitions “strong event transitions” be-
cause only when jumping from state Up to state Down (or
vice-versa) will one count a transition. The self transitions
Up-Up and Down-Down are not considered in this section
but will be considered in Section 3.2.

Figure 5 shows an extract of successive laminar epochs
that are registered for two different values of the parameter
hx = 0.415 (a) and hx = 0.417(b). Note that the
laminar periods shown in Fig. 4 are defined by the “strong
event” definition. Now we are interested in testing if the
Pomeau-Manneville theory [1] does apply in this case.
Note that contrary to Pomeau-Manneville, here we have
two unstable limit cycles, and in addition, we define the
transition through the ad-hoc “strong event” definition.
We know that as the system is brought closer to the
bifurcation, the laminar epochs are getting larger. The
statistical distribution of the laminar epoch has been derived
by Pomeau-Manneville [1], and it follows:

PkT ∼
e−2εkT

(1− e−4εkT )3/2
, (5)

where ε is the distance to the bifurcation threshold. Note
that Eq. (5) contains a double asymptotic dependence.
Indeed, we have:

PkT ∼ k
−3/2
T for ε−1 � kT � 1,

PkT ∼ e−2εkT for kT � ε−1. (6)

In many instances, especially when dealing with
experimental signals, it is often useful to ask how often a
random variable is above a certain level. One defines the
complementary cumulative distribution function (CCDF),
which allows studying the tail of the distribution with
greater accuracy. In the present case, we have:

CCDF(kT0
) ∼

∫ +∞

kT0

PkT dkT ∼
e−2εkT0

(1− e−4εkT0 )1/2
, (7)

where CCDF(kT0) gives the distribution of the laminar
epochs with a duration larger than a given value kT0 .
Again, as for Eq. (5) the CCDF has a double asymptotic
dependence.

Figure 6 shows the non-normalized distribution of
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Figure 6: Statistics of laminar epochs exceeding a given
duration of kT0 (CCDF(kT0)) not normalized. Symbol
colors refer to the values of the bifurcation parameter. Black
circles corresponds to hx = 0.417; Red squares (hx =
0.416); Green diamonds (hx = 0.415); Blue triangles
(hx = 0.414). The main panel shows the exponential tail of
the distributions for kT0 � ε−1. The inset panel illustrates
the power-law CCDF ∼ k−1/2T0

at low values of kT0
.

laminar epochs that are longer than a given value kT0
. the

results were collected for simulations as long as 24 millions
of the basic period. The distributions of CCDF shown in
Fig 6 have two asymptotic behaviors. A power law N ∼
k
−1/2
T0

for intermediate values of kT0
and an exponential tail

for large value (kT0
� ε−1) of the form N ∼ e−bkT0 . We

fitted the exponential tails for six consecutive values of the
parameter hx close to the bifurcation. The results of the fits
are collected in Table 1, where the standard error (SE) is
also given. Here we use the definition of the standard error
as one standard deviation of the point estimate of parameter
b.

Table 1: Tail parameter b of the exponential tails shown in
Figure 6.

hx b SE R2

0.413 1.965e-2 2.86e-5 0.9999
0.414 1.621e-2 1.49e-5 0.9999
0.415 1.276e-2 1.85e-5 0.9999
0.416 8.624e-3 7.82e-6 0.9999
0.417 4.322e-3 2.97e-6 0.9998
0.4178 5.819e-4 4.29e-7 0.9996

From Table 1, one observes that the exponential fit
is in excellent agreement with the collected data (R2

close to one) and that the parameter b is vanishing as we
approach the bifurcation threshold. Indeed, from Eq. (7),
the parameter b is directly proportional to the distance to
the bifurcation.

One summarizes this section by acknowledging that
even if one has only considered the “strong event” definition

for a transition here and that one has two rather than one
unstable limit cycle, the Pommeau-Manneville theory for
the laminar period statistics is essentially correct. This
is reminiscent of what happens in other statistical studies
where the threshold for the definition of events does not
affect the overall statistics essentially, as it happens, for
example, in geophysical events (earthquakes, hurricanes,...)
of different categories.

3.2. Detailed transitions

In the simulations of Eq. (1), one has access to all the
state variables at any time. As illustrated in Fig. 4, after
a laminar epoch, the system enters a turbulent regime and is
then pushed towards one of the two unstable limit cycles.
In general, one should therefore consider four types of
transitions as summarized in the generic matrix below:

hx From state

Up Down

To
st

at
e Up Nuu Ndu

Down Nud Ndd

The number of transitions from a Up state to a Up state
is given in the transition matrix by the number Nuu. The
“strong event” transitions are indicated by Nud and Ndu.
Because we need to cross the zero-line to add a “strong
event” transition, the above transition matrix is symmetric
(or at least the numbers Nud and Ndu should not differ
by more than one unit). The numbers in the transition
matrix will depend on the parameter hx. The numbers
of transitions are calculated for six different values of the
parameter hx and are given in Appendix A.

Before discussing the results of the transition matrices,
let us explain in detail the detection algorithm that we
have used for deciding if the system is in one of the
three following states: laminar regime “up”; laminar
regime “down”; or relaminarisation regime (also called
“burst”). The algorithm analyzes the x component of
the magnetization vector m period after period, as shown
in Fig 7. For each basic period, we search for two
representative points of the signal: the highest local
minimum (indicated by black asterisks in Fig 7); and
the second-highest local maxima denoted in Fig 7 by red
squares. It becomes apparent from Fig 7 that the lowest
laminar state (“down” state) is characterized by growing
alternating (subharmonic) fluctuations of the second local
maxima around the value of mx ≈ −0.4041 and also
weaker fluctuations of the highest local minimum around
the value mx ≈ −0.8898. Due to symmetry, the “up”
state regime is characterized by growing fluctuations of
the highest minimum around the value of mx ≈ 0.4041
and also weaker fluctuations of the second local maximum
around the value mx ≈ 0.8898. Our detection algorithm
is based on those characteristics to decide if the system is
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Figure 7: a) Representative points taken during each period
from the x component of the magnetization vector m. The
black asterisks indicate the highest local minimum attained
during the corresponding analyzed period. The red squares
indicate the second-highest local maxima attained during
the corresponding period. b) Stroboscopic representative
values (Poincaré sections) taken after each period for the
two unstable periodic orbits. The red dots correspond to
the iterations close to the lower solution. The black dots
correspond to the iterations close to the upper solution. The
parameter is fixed to hx = 0.415.

in one of the three aforementioned states (“Up”; “Down”;
or “burst”). Figure 7b illustrates the results of the detection
algorithm over a period of 3,500 periods.

This refined algorithm allows filling the transition
matrix with all the collected transitions. While this
algorithm is simple, it is not always practical as we do not
always have access to the full information of the dynamical
system.

Thanks to this algorithm, we are now able to test if
the symmetry between states up and down is maintained.
Indeed, in principle, due to the degeneracy of the system,
both unstable limit cycles should have the same behavior
close to the bifurcation threshold. We perform a χ2 test
from the transitions matrices (see Appendix A) to determine
if the symmetry up-down is conserved.

In Table 2, we denote by p̂uu and p̂dd the estimated
transition probabilities from the measured transition matrix
tables (using maximum likelihood estimates). If symmetry
were perfectly satisfied, the “self” transition probabilities
should be equal and puu = pdd = pself, again estimated by
the following expression:

p̂self =
p̂uu + p̂dd

2
(8)

Table 2: Transition matrix results with χ2 tests to determine
if the symmetry up-down is conserved. N corresponds to
the total number of transitions.

hx N p̂uu p̂dd p̂self χ2
2 p-value

0.413 743262 0.2516 0.2524 0.2520 0.965 0.617
0.414 633074 0.2701 0.2715 0.2708 2.26 0.323
0.415 562637 0.2723 0.2733 0.2728 0.904 0.636
0.416 351450 0.2426 0.2431 0.2428 0.218 0.897
0.417 303387 0.2511 0.2493 0.2502 2.04 0.360
0.4178 116851 0.2619 0.2603 0.2611 0.557 0.757

Table 2 shows that there is no statistically significant
difference between the number of transition “Up-up” and
“Down-down.” The probabilities p̂uu and p̂dd are not
statistically different, as indicated by the p-value of the
last column of Table 2. Furthermore, Table 2 shows that
p̂self ≈ 0.25 meaning that there is approximately the
same number of transitions for “strong events” as for “self”
transitions. This was not expected, and it is presumably
something special about this specific dynamical system.

Figure 8 shows the transient proportions of the
different transition types in the system when the dynamics
evolve. As we have mentioned in the Introduction, we
have simulated very long time series, and Fig. 8 shows
that the time scale to reach steady values is indeed very
long when we are close to the bifurcation threshold. Note
that the “strong events,” related to the probabilities pud and
pdu, settle more quickly than the “self” transitions puu and
pdd. Also, quite unexpectedly, in Fig. 8, one observes
that the four probabilities converge to the same value of
approximately one quarter.

3.3. Epoch duration statistics

In this section, we provide the statistics associated with the
epoch durations prior to a transition. We show in Fig. 9
that we are now considering all types of transitions that
may occur in the system. Note that when we consider the
detailed transitions, the epoch duration is smaller than when
we consider the “strong events” type of transitions. In Fig. 9
τall is obtained by collecting the four different types of
detailed transitions, i.e., τuu; τdd; τud; τdu. From Fig. 9, it
becomes apparent that we also have an exponential tail for
the statistical distributions when considering the detailed
transitions. However, the value of the exponential decay
is somewhat larger (in absolute value), i.e., the distribution
tail is smaller for τall than in the case of the “strong events”
type of transitions (compare with τse in Fig. 9). As we have
done in the case of the “strong events” type of transitions,
we perform a fit for the distribution tail of the CCDF of
τall, and the results are collected in Table 3. Note that we
use here the notation N ∼ e−b̃kT0 for the decaying tail in
order to distinguish from the fit of the “strong events” tails.

The results collected in Table 3 show that as it
happened in the case of the fitting of the “strong events”
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Figure 8: Evolution of the transient proportions of the
different transition types. Here, the total number of
transitions between laminar epochs is 303,387. The
total simulation time is 24,371,366 basic periods. Black
circles refer to the proportion of transitions “Up-Up.”
Red squares refer to the proportion of transitions “Down-
Down.” Magenta triangles pointing downwards indicate
the proportion of transitions “Up-Down.” Cyan triangles
pointing upwards indicate the proportion of transitions
“Down-Up.” The figure is drawn with the bifurcation
parameter set to hx = 0.417.

tails, the coefficient of the exponential fit b̃ vanishes as
it approaches the bifurcation threshold. This will allow
getting a new independent estimate of the bifurcation
threshold from this new series of exponential fits.

Table 3: Tail parameter b̃ of the exponential tails of the
CCDF of the corresponding PDF distribution τall shown in
Fig 9.

hx b̃ SE R2

0.413 2.491e-2 6.15e-5 0.9999
0.414 1.990e-2 4.10e-5 0.9999
0.415 1.501e-2 1.97e-5 0.9999
0.416 9.842e-3 1.03e-5 0.9999
0.417 4.773e-3 3.77e-6 0.9999
0.4178 5.957e-4 4.17e-7 0.9996

3.4. Permanency phase statistics

In this section we also provide the statistics related to the
total permanence time in the three states “Up”, “Down”,
and “burst.” This is somewhat different from the transition-
type statistics that we have studied in Section 3.2. Here,
we are interested in checking if the dynamical system
spends the same amount of time in the “Up” and “Down”
states as it should be due to the symmetry of the two

0 100 200 300 400 500

 time (in p. units) 
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10
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p
d
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uu
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all

se

Figure 9: PDFs of the laminar epoch distributions prior
to a given transition event. Black circles refer to τuu,
i.e., the time distribution of laminar epochs preceding an
Up-Up transition (see text for details). Plus sign symbols
in green refer to τall the aggregate of the four individual
distributions τuu; τdd; τud; τdu. The asterisk symbols
τse refer to the time distribution preceding a “strong”
event (see text for definition). All the distributions exhibit
an exponential tail. The fits of the tails are for the
corresponding CCDF distributions and are given in Table
3. The figure is drawn with parameter set to hx = 0.414.

limit cycles. Figure 10 shows that after some transient,
the system equilibrates towards a quasi-steady state where
the amount of time spent in the “Up” and “Down” states
is nearly the same. Recall that the total duration of the
simulations is over 24 million of the basic period. In
Appendix A, Table A1 collects the amount of time in the
different phases as well as the percentiles of the distribution
of the laminar phases. A simple χ2 square test shows that
the time spend in the “Up” and “Down” is not statistically
equivalent. Here a word of caution is in order. In the
hypothesis testing, we assume that the basic period is the
correct unit time scale to consider a transition between the
two states. This is certainly not quite correct, and a better
time scale would be the inverse of the parameter b from
Table 1, which is a more physical time scale associated
with the intermittency phenomenon. In addition, in the
Table A1 are the percentiles P50, P90, P95 of the laminar
periods given. Here, we have collected on one hand the
laminar periods corresponding to all the transitions, and on
the other hand, the ”strong event” transitions. Table A1
shows that the higher percentiles for the “strong event”
transitions are considerably larger than the corresponding
ones for the “all” transition events.

3.5. Poincaré sections

As observed from Fig. 4, the instability prior to a “burst” or
relaminarisation epoch takes place through a subharmonic

Page 8 of 13AUTHOR SUBMITTED MANUSCRIPT - draft

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Study of type-III intermittency in the Landau-Lifshitz-Gilbert equation 9

0.5 1 1.5 2

 time (in p. units) 10
6

0

0.2

0.4

0.6

 E
p

o
c
h

 t
y
p

e
 p

ro
p

. 
 

Up

Down

Burst

Figure 10: Transient proportions of the different epoch
types (Up, Down and Burst states). The total simulation
time corresponds to 24,371,366 basic periods. Here we
have plotted the transient up to 2.4 million of the basic
period. The black line refers to the transient proportion
of time spent in the Up epochs. The red line refers to the
transient proportion of time spent in the Down epochs. The
blue line refers to the transient proportion of burst epochs.
The figure is drawn with parameter hx = 0.417.

instability. This is indeed the hallmark of type-III
intermittencies, and this can be put forward in a Poincaré
section study. This section is devoted to the study of the
Poincaré sections extracted from the long simulations of the
chaotic dynamics Eqs. (1).

The onset of intermittencies corresponds to the
instability of one of the two limit cycles (LC) that are
slightly unstable. The hallmarks defined in Section 3.2,
i.e., the highest local minimum and the second-highest
maximum, will serve as the definition for two Poincaré
sections. One of the sections will follow the stability of
one of the LC, and the other section will correspond to the
other unstable LC. Close to the unstable LC, one can write
a mathematical expansion in terms of the amplitude. These
amplitudes are perturbations of the unstable LC. These
perturbations can be described at lower order as follows:

In+1 = −(1 + ε)In +AI2n +BI3n +O(I3n). (9)

where A and B are numerical constants; ε is the distance
to the threshold, and the In indicates the strength of the
perturbation at iteration n in the Poincaré map. When
considering a subharmonic instability, it is easier to deal
with the second return map (i.e., the application of the
application Eq. (9)). If ε is small, we get at first order in
ε:

In+2 = (1 + 2ε)In + cI3n (10)

where c = −2A2 − 2B. Note that the quadratic term is
vanishing as it is multiplied by the infinitesimal ε, which

is typical of type-III intermittency. In addition, in Eq.
(10), we are left with a slightly greater than one linear
term that indicates the instability rate. Actually, this
is directly connected with the Floquet multiplier of the
instability. In the present case, the cubic term c is positive,
and the instability is not bounded by weakly nonlinear
terms. Rather the unstable trajectory is performing a large
excursion in the phase space, and after a relaminarisation
period, it is re-injected close to one of the two unstable LCs.

Using Eq. (10) for our data at different values of
the bifurcation parameter hx will lead to another way to
determine the bifurcation threshold. For parameter hx in the
range between [0.413−0.4178], we have examined the long
simulations (up to over 24 million of the basic period), and
we keep the longest laminar epochs (independently of the
type of transition that ends the laminar epoch). We analyze
approximately the 1,500 longer laminar epochs for each
value of the bifurcation parameter hx. We fit the second
return map according to Eq. (10), where we allow only for
a linear and cubic term as fitting parameters. In general,
the goodness of fit is excellent, with an R2 very close to
one. Because we have kept over 1,500 epochs, we get a
good sampling distribution for the linear parameter and we
report the mean value and standard deviation of the linear
term of Eq. (10) from this sampling distribution. Actually,
we report the linear term as 1+aε because the projection of
the Poincaré section does not ensure to have exactly a linear
term of the form 1 + ε but rather a correction term which is
linearly proportional to ε as in the term 1 + aε.

Table 4 reports the mean values of the linear fitting
parameters as well as their standard deviations for several
hx. This shows, as expected, that the linear term is
vanishing when approaching the bifurcation threshold. The
cubic term of the fit from Eq. (10) is also given in Table 4
for completeness.

Table 4: Linear and cubic fitting parameters from Eq. (10).
The standard error is equal to a standard deviation of the
corresponding sampling distribution.

hx aε SEaε c SEc
0.413 4.781e-2 1.04e-3 109.1 4.19
0.414 3.829e-2 1.02e-3 108.6 4.69
0.415 2.866e-2 8.33e-4 108.0 5.37
0.416 1.893e-2 6.41e-4 106.6 5.94
0.417 9.139e-3 4.24e-4 102.6 6.74
0.4178 1.14e-3 5.90e-5 95.8 3.52

4. Approximation of the bifurcation threshold

The determination of the bifurcation threshold of any
dynamical system is almost always tricky. Especially when
dealing with noisy experimental data, one often has trouble
determining with accuracy the bifurcation threshold. This
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Figure 11: Second return maps (Poincaré maps) for the
two unstable periodic orbits. The red squares in panel (a)
refer to successive iterations of the lower solution. The
black circles in panel (b) refer to successive iterations of the
upper solution, as shown in Fig 6. The parameter is fixed to
hx = 0.415.

manuscript shows that one has different techniques that can
help to determine the bifurcation threshold quite accurately.

Table 5: Comparison of the different estimates for the
bifurcation threshold h

(c)
x . The confidence intervals (CI)

are obtained through a bootstrap method [75].

Method h
(c)
x 95% CI

Poincaré 0.417932 [0.417870 – 0.417997 ]
“Strong events” 0.418077 [0.418073 – 0.418080 ]
“All events” 0.417938 [ 0.417933 – 0.417943 ]
Lyapunov 0.417920 [0.417919 – 0.417921 ]

In Table 5, we have compared the different estimates
of the bifurcation threshold h

(c)
x . In addition to a point

estimate for the bifurcation threshold h
(c)
x , Table 5 also

provides a 95 % confidence interval (CI) for each of
the estimates. These CI were obtained through a simple
bootstrap method. Basically, we use 50,000 repetitions of
the linear fits for the different methods. This provides a
sampling estimation, and we use the percentiles 2.5 and
97.5 as a measure of the distribution spread [75].

5. Conclusions

The present manuscript aims to propose several alternatives
to characterize the bifurcation threshold in a transition
to type-III intermittencies. We have shown through
four different techniques that the values obtained for the
bifurcation threshold are consistent. The best method, the
one associated with the Lyapunov exponents’ computation,
is also the less practical. Indeed, from experimental data,
it is more complicated to extract accurately the Lyapunov
exponents associated with the dynamics [77].

An important outcome from our analysis is that if we
capture long enough signals, we can reach a very high

accuracy, even with experimental signals for determining
the bifurcation thresholds.

One clear limitation of the present work is associated
with the accuracy of the data. Indeed, we need to either
determine in which phase the system is (laminar or burst
phase), or in the case of the Poincaré section technique,
be able to follow the subharmonic instability. This is
somewhat the main limitation of the methods, and in the
case of experimental setups, one may need to do some
filtering to clean the noisy data.

In the case of the physical system that we have studied,
i.e., the parametrically driven dissipative magnetization
dynamics of an anisotropic nanoparticle, one has found
that the intermittency region is relatively narrow in the
parameter space. This is in contrast with what happens
in other systems like in fluid convection [21], where
the intermittency dynamics exist for a broader range of
parameters.

Many dynamical systems exhibit type-III intermit-
tency, and we have provided some tools for further studying
their characteristics near the threshold. Future direction to
this research would connect two or more of these dynami-
cal systems and see how it affects the bifurcation thresholds
and the intermittency dynamics.
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Appendix A. Statistics of the number of transitions
between the two states

In this Appendix, we have gathered the results of the num-
ber of transitions as characterized in Section 3.2. The ab-
solute number of transitions is decreasing as we approach
the bifurcation threshold. This is a consequence of the fact
that the we have larger laminar epochs between the differ-
ent transitions. Note that the laminar epochs of duration less
than two periods have been removed from the statistics.

hx = 0.413 From state

Up Down

To
st

at
e Up 186972 184362

Down 184362 187566

hx = 0.414 From state

Up Down

To
st

at
e Up 171013 145084

Down 145085 171892

hx = 0.415 From state

Up Down

To
st

at
e Up 153234 127822

Down 127821 153760

hx = 0.416 From state

Up Down

To
st

at
e Up 85261 90367

Down 90368 85454

hx = 0.417 From state

Up Down

To
st

at
e Up 76177 75795

Down 75795 75620

hx = 0.4178 From state

Up Down

To
st

at
e Up 30598 27919

Down 27920 30414
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Table A1: Summary of the total epoch durations and percentiles of the epoch durations prior to a transition as a function of
the bifurcation parameter hx. Note that the epoch duration are given in term of the basic period. The χ2 square test check
for the null hypothesis that the Up and Down durations are equal. For the computation of the percentiles of the epoch
duration prior to a burst we have pruned the distributions from all the epochs with a duration less than three basic periods.
Note that the total time amounts to 24,371,366 basic periods. We have reported the percentiles 50 to 99 because we are
interested in the right tail of the epoch distribution (which is known to follow an exponential distribution).

Epoch durations All events Only “strong events”

hx Up Down Burst χ2 p-val. P50 P90 P95 P99 P50 P90 P95 P99

0.413 8872849 8878208 6620308 1.62 0.203 16 74 102 166 15 87 123 206

0.414 9315018 9361258 5695090 114 < 1.e-16 18 91 126 206 16 105 147 248

0.415 9566694 9618248 5186424 138 < 1.e-16 19 109 154 261 14 116 171 299

0.416 10610502 10575775 3185089 56.9 4.5.e-14 27 196 267 429 19 206 288 474

0.417 10662128 10552688 3156550 564 < 1.e-16 25 229 353 687 15 212 338 710

0.4178 11576493 11493539 1301334 298 < 1.e-16 26 533 1278 3858 14 327 910 3451
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