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Fuzzy operators are an essential tool in many fields and the operation of composition is
often needed. In general, composition is not a commutative operation. However, it is very
useful to have operators for which the order of composition does not affect the result. In
this paper, we analyze when permutability appears. That is, when the order of application
of the operators does not change the outcome. We characterize permutability in the case of
the composition of fuzzy consequence operators and the dual case of fuzzy interior opera-
tors. We prove that for these cases, permutability is completely connected to the preserva-
tion of the operator type.

We also study the particular case of fuzzy operators induced by fuzzy relations through
Zadeh’s compositional rule and the inf-! composition. For this cases, we connect per-
mutability of the fuzzy relations (using the sup-⁄ composition) with permutability of the
induced operators. Special attention is paid to the cases of operators induced by fuzzy pre-
orders and similarities. Finally, we use these results to relate the operator induced by the
transitive closure of the composition of two reflexive fuzzy relations with the closure of the
operator this composition induces.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

Fuzzy consequence operators and fuzzy interior operators are an essential tool in most of the different frameworks were
fuzzy logic appears. As prominent examples, we find approximate reasoning and fuzzy mathematical morphology. In
approximate reasoning, fuzzy consequence operators are used to obtain conclusions from certain fuzzy premises and fuzzy
relations [13,18,19,30]. Fuzzy interior operators appear as a dual notion of fuzzy consequence operators in the lattice of truth
values [5]. In fuzzy mathematical morphology, fuzzy consequence operators and fuzzy interior operators are called fuzzy
closings and openings respectively and they act as morphological filters used for image processing [7,8,15,16]. Operators
induced by fuzzy relations appear in this context as a generalization of morphological filters defined in sets were an additive
operation does not necessarily exist [20,22]. In these cases, the fuzzy relation plays the role of structuring element. This
abstraction allows to use certain techniques from fuzzy mathematical morphology into data mining problems [21]. Other
places where fuzzy consequence and interior operators appear are modal logic [10], fuzzy topology [23–25], fuzzy rough sets
[9,28,34], fuzzy relation equations [29] and fuzzy concept analysis [1,3].
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In all these contexts there is a need of concatenating two or more operators and it is important to know when this com-
position preserves their properties. A very relevant question is whether the composition of two fuzzy consequence (interior)
operators is such an operator. As will be shown it this paper, it turns out to be closely related to their permutability or
commutativity.

The objective of this paper is to characterize permutability in the case of composition of either two fuzzy consequence
operators or two fuzzy interior operators. We study two particular cases of operators induced by fuzzy relations: fuzzy
operators induced by means of Zadeh compositional rule and fuzzy operators induced by the inf-! composition, mainly
focusing on the cases of operators induced by fuzzy preorders and similarities. As we shall see, permutability of fuzzy rela-
tions is closely related to permutability of their induced fuzzy operators and preservation of their properties.

The paper is organized as follows. In Section 2 we set the framework and we recall the main definitions and results that
will be used throughout the paper.

In Section 3 we recollect several definitions and results that show connections between fuzzy relations and fuzzy opera-
tors. We recall the operators C�R and C!R given by Zadeh’s compositional rule and inf-! composition respectively, several of
their properties and extend the notion of C�R to a more general process to obtain fuzzy operators from a fuzzy relation and
another fuzzy operator. We introduce the notion of concordance between a fuzzy operator and a fuzzy relation, which is the
key to preserve the properties of fuzzy consequence operator of the induced operator.

Sections 4 and 5 are devoted to the analysis of permutability for certain cases of fuzzy relations and fuzzy operators. In
Section 4, we study permutability of general fuzzy preorders and the particular case of fuzzy indistinguishability relations. In
Section 5, permutability of fuzzy consequence operators is characterized and dual results are obtained for the case of fuzzy
interior operators.

Sections 6 and 7 show the relationship between permutability of fuzzy relations and permutability of fuzzy operators by
using the connections established in Section 3. In Section 6, we relate permutability of fuzzy relations with permutability of
the operators that they induce through Zadeh’s compositional rule. In Section 7, a similar study is made for operators
induced through inf-! composition. We use the results developed in Sections 4 and 5 in order to study the cases of fuzzy
operators induced by fuzzy preorders and similarities.

In Section 8 we analyze under which conditions different properties of the induced operators are satisfied even if per-
mutability does not hold. Some of these properties are used to relate the operator induced by the transitive closure of the
composition of two reflexive fuzzy relations with the closure of the operator this composition induces.

Finally, in Section 9 we present the conclusions.

2. Preliminaries

Let X be a non-empty classical set and let ½0;1�X denote the set of all fuzzy subsets of X with truth values in ½0;1� endowed
with the structure of complete commutative residuated lattice (in the sense of Bělohlávek [4]). That is, h½0;1�;^;_; �;!;0;1i
where ^ and _ are the usual infimum and supremum, ⁄ is a left-continuous t-norm and! is the residuum of ⁄ defined for
8a; b 2 X as a! b ¼ supfc 2 ½0;1�ja � c 6 bg.

Recall that ⁄ and ! satisfy the adjoiness property
x � y 6 z() y 6 x! z
and that ⁄ is monotone in both arguments while ! is antitone in the first argument and monotone in the second one.
As always, the inclusion of fuzzy sets is defined by the pointwise order, i.e. l # m if and only if lðxÞ 6 mðxÞ for all x 2 X.
Let us recall some properties of h½0;1�;^;_; �;!;0;1i that will be used in the paper. Detailed proofs can be found in [4].

Proposition 2.1. The residuated lattice h½0;1�;^;_; �;!;0;1i satisfies the following conditions for each index set I and for all
x; xi; y; yi; z 2 ½0;1� with i 2 I:
1. 1! x ¼ x
 6. ðx! yÞ � ðy! zÞ 6 ðx! zÞW W

2. x 6 y() x! y ¼ 1
 7. x � i2Iyi ¼ i2Iðx � yiÞV V

3. x � 0 ¼ 0
 8. x! i2Iyi ¼ i2Iðx! yiÞW V

4. x � ðx! yÞ 6 y
 9. i2Ixi ! y ¼ i2Iðxi ! yÞV V

5. ðx � yÞ ! z ¼ x! ðy! zÞ
 x � i2Iyi 6 i2Iðx � yiÞ
We will use the notation sup or _ for the supremum and inf or ^ for the infimum indistinctly.

Recall that every partially ordered set P, and therefore every lattice, gives rise to a dual (or opposite) partially ordered set
which usually denoted Pd. Pd is defined to be the set P with the inverse order, i.e. x 6 y holds in Pd if and only if y 6 x holds in
P. It is easy to see that this construction allows us to translate every statement from P to a statement Pd by replacing each
occurrence of 6 by P. Notice that if P is a lattice, every occurrence of _ gets replaced by ^ and vice versa [14].
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A fuzzy operator is a map C : ½0;1�X�!½0;1�X . We denote X0 the set of all fuzzy operators on the referential set X. Recall

that X0 is a lattice with order given by C 6 C0 if and only if CðlÞ# C0ðlÞ for all l 2 ½0;1�X . All the operations are pointwise
inherited from the structure given to ½0;1�.

Definition 2.1. A fuzzy operator C 2 X0 is called a fuzzy consequence operator or fuzzy closure operator (FCO for short) when

it satisfies for all l; m 2 ½0;1�X:

(C1) Inclusion l # CðlÞ
(C2) Monotonicity l # m) CðlÞ# CðmÞ
(C3) Idempotence CðCðlÞÞ ¼ CðlÞ

X will denote the set of all fuzzy consequence operators of ½0;1�X .
Definition 2.2. A fuzzy operator C 2 X0 is called a fuzzy interior operator (FIO for short) when it satisfies for all l; m 2 ½0;1�X:

(I1) Anti-inclusion CðlÞ#l
(I2) Monotonicity l # m) CðlÞ# CðmÞ
(I3) Idempotence CðCðlÞÞ ¼ CðlÞ

K will denote the set of all fuzzy interior operators of ½0;1�X .
Fuzzy consequence operators were introduced by Pavelka in 1979 as an extension of Tarski’s consequence operators to

fuzzy sets [30]. In approximate reasoning, they perform the role of deriving consequences from certain premises and rela-
tions [19,30,13,18]. From an algebraic point of view, fuzzy consequence operators are the closure operators the lattice ½0;1�X

[35]. Fuzzy interior operators appear as a dual notion of fuzzy closure operators [5]. They can be seen as fuzzy consequence
operators in the dual lattice X0d. One can prove that X0 and X0d are isomorphic through the function u : X0�!X0d defined as
uðCÞ ¼ 1� C where 1� C is the fuzzy operator defined as ð1� CÞðlÞðxÞ ¼ 1� CðlÞðxÞ for every l 2 ½0;1�X and x 2 X. Notice
that C is a fuzzy consequence operator in X0 if and only if uðCÞ is a fuzzy consequence operator in X0d. The same is true for
fuzzy interior operators, C is a fuzzy interior operator in X0 if and only if uðCÞ is an fuzzy interior operator in X0d. Therefore,
every result stated for fuzzy consequence operators in X0 have its dual statement, true for fuzzy interior operators in X0d

which becomes also true for fuzzy interior operators in X0 via u�1. In fuzzy mathematical morphology, both kinds of opera-
tors act as morphological filters for image processing [15,16]. They have been extensively studied in several contexts
[6,26,33] and they have been used to transfer results from the field of approximate reasoning to the field of fuzzy mathemati-
cal morphology [20].

Let us recall the definition of the fuzzy closure of a fuzzy operator. This notion was first defined for general lattices [35]
and later translated to the fuzzy context by Pavelka [30]. It can be thought as the best upper approximation by a fuzzy con-
sequence operator to a given operator.

Definition 2.3. Let C : ½0;1�X�!½0;1�X be a fuzzy operator. We define the fuzzy closure C of C as the fuzzy operator given by
C ¼ inf
/2X
C6/

f/g: ð1Þ
The fuzzy closure is a fuzzy consequence operator and it is uniquely determined since the infimum of fuzzy consequence
operators so is. Dually, one can consider the greatest fuzzy interior operator which is smaller than or equal to a given opera-
tor; that is the best lower approximation of a fuzzy operator C by a fuzzy interior operator.
Definition 2.4. Let C : ½0;1�X�!½0;1�X be a fuzzy operator. We define the fuzzy interior C of C as the fuzzy operator given by
C ¼ sup
/2K
CP/

f/g: ð2Þ
Fuzzy (binary) relations on X are fuzzy subsets of the cartesian product X � X. For every pair ðx; yÞ 2 X � X;Rðx; yÞ repre-
sents the degree in which x is related to y. We denote C0 the set of fuzzy binary relations defined on X.
Definition 2.5. A fuzzy relation R : X � X�!½0;1� is called a fuzzy �-preorder if it satisfies:

� Reflexivity: Rðx; xÞ ¼ 1 8x 2 X.
� �-Transitivity: Rðx; yÞ � Rðy; zÞ 6 Rðx; zÞ 8x; y; z 2 X.

A fuzzy preorder is called a fuzzy �-indistinguishability relation or fuzzy �-similarity if it also satisfies.



� Symmetry: Rðx; yÞ ¼ Rðy; xÞ 8x; y 2 X.
Recall that for R and S 2 C0, we say that R 6 S if Rðx; yÞ 6 Sðx; yÞ for all x; y 2 X.
We will consider in C0 the sup-� composition which was introduced by Zadeh [36].

Definition 2.6. Let R; S 2 C0 be fuzzy relations on a set X and ⁄ a t-norm. The sup-⁄ composition of R and S is the fuzzy
relation defined for all x; y 2 X by
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R � Sðx; yÞ ¼ sup
w2X

Rðx;wÞ � Sðw; yÞf g ð3Þ
For a given fuzzy relation R, a fuzzy subset l of X is called �-compatible with R if lðxÞ � Rðx; yÞ 6 lðyÞ for all x; y 2 X. From
its logical implications, these sets are also called true-sets or closed under modus ponens. This notion gets special interest
when R is a preorder [11]. When R is not only a preorder but also an indistinguishability relation, these sets are called exten-
sional sets and they have been largely studied [31].
3. Connections between fuzzy relations and fuzzy operators

Concepts of fuzzy relations and fuzzy operators are closely related. Zadeh as early as 1973 [37] introduced the
Compositional Rule of Inference (CRI) that generates a fuzzy operator from a given fuzzy relation. Since then, the study of
the relation between fuzzy relations and fuzzy operators has been a very fruitful area of research and applications. If we
restrict to the concepts of Consequence and Interior operators, relevant results have been obtained for fuzzy ⁄-similarities
in [4,12,27,31], for fuzzy ⁄-preorders in [8,18,19], and for general fuzzy relations in [7]. We shall focus on the operators
C�R and C!R induced by a relation R.

3.1. The operator C�R

Every fuzzy relation induces a fuzzy operator through the well-known Zadeh’s rule of inference [38].

Definition 3.1. Let R 2 C0 be a fuzzy relation on X. The fuzzy operator induced by R through Zadeh’s compositional rule is
defined by
C�RðlÞðxÞ ¼ sup
w2X
flðwÞ � Rðw; xÞg ð4Þ
Notice that from a logical point of view, C�R can be understood as the operator that sends every fuzzy set l to the fuzzy set
containing all the elements which are related to some element w in l by means of the relation R.
Proposition 3.1 [19]. Let r : C0�!X0 be the function that sends every fuzzy relation R to the operator C�R induced by means of Eq.
(4). Then, r is injective.

In other words, injectivity of r states that for any two fuzzy relations R and S, we have C�R ¼ C�S if and only if R ¼ S. The
relationship between fuzzy preorders and fuzzy consequence operators was well established [18,11].

Proposition 3.2. Let R be a fuzzy relation. Then C�R is a fuzzy consequence operator if and only if R is a fuzzy �-preorder.

It is worth recalling that not all FCO can be obtained from fuzzy preorders by means of Zadeh’s compositional rule. When
the starting relation is a fuzzy indistinguishability relation, the induced operator is not only a FCO but satisfies the following
properties [31].

Proposition 3.3. Let E be a fuzzy �-indistinguishability relation and let C�E be the fuzzy operator induced through Zadeh’s
compositional rule. Then,

1. C�E is a fuzzy consequence operator.

2. C�Eð
W

i2IliÞ ¼
W

i2IC
�
EðliÞ for any index set I and all li 2 ½0;1�

X.
3. C�Eð xf gÞðyÞ ¼ C�Eð yf gÞðxÞ for all x; y 2 X where xf g denotes the singleton of x.

4. C�Eða � lÞ ¼ a � C�EðlÞ for any constant a 2 ½0;1� and l 2 ½0;1�X.
Proposition 3.4. There is a bijection between the set of �-indistinguishability relations and the set of fuzzy operators satisfying the
conditions of Proposition 3.3.

We generalize the operator induced by a fuzzy relation through Zadeh’s compositional rule to a fuzzy operator induced by
a fuzzy relation and another fuzzy operator.
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Definition 3.2. Let g 2 X0 be a fuzzy operator and let R 2 C0 be a fuzzy relation on X. We define the operator C g
R induced by g

and R as
C g
R ðlÞðxÞ ¼ sup

w2X
fgðlÞðwÞ � Rðw; xÞg ð5Þ
R and g are called the generators of C g
R .

The operator g used as generator performs a selection in order to apply Zadeh’s usual operator only to the fuzzy subsets of

its image. Notice that taking g ¼ id, where id denotes the identity operator on ½0;1�X , we obtain Cid
R ¼ C�R.

Proposition 3.5. For every g 2 X0, the mapping rg : C0�!X0 that sends every fuzzy relation R to the operator C g
R induced by R and

g by means of Eq. (5) is increasing. That is, if R 6 S then C g
R 6 C g

S .
Proof. It directly follows from the monotonicity of �. h
Corollary 3.1. The mapping r : C0�!X0 that sends every fuzzy relation R to the operator C�R induced by Zadeh’s compositional rule
(Eq. (4)) is increasing.

Our interest lies in the obtention of fuzzy consequence operators. For this, we need certain individual properties of the
generators and also some conditions involving both generators, operators and relations. More precisely, let us define the con-
cordance between a fuzzy operator and a fuzzy relation.

Definition 3.3. Let g be a fuzzy operator and R a fuzzy relation. We will say that g is �-concordant with R if all the subsets
from the image of g are �-compatible with R. That is,
gðlÞðxÞ � Rðx; yÞ 6 gðlÞðyÞ
for all x; y 2 X and all l 2 ½0;1�X .
Theorem 3.1. Let R 2 C0 be a reflexive fuzzy relation and let g 2 X0 be a FCO. Suppose that g is �-concordant with R. Then, the
operator C g

R induced by g and R is also a FCO.
Proof. Let us start proving the inclusion and monotonicity properties. From the reflexivity of R, it follows that
C g
R ðlÞðxÞ ¼ sup

w2X
fgðlÞðwÞ � Rðw; xÞgP gðlÞðxÞ � Rðx; xÞ ¼ gðlÞðxÞ:
Since g is a FCO and therefore inclusive, we get
C g
R ðlÞðxÞP gðlÞðxÞP lðxÞ
Let l1;l2 2 ½0;1�
X such that l1 #l2. From the monotonicity of g it follows that gðl1ÞðxÞ 6 gðl2ÞðxÞ for all x 2 X. Therefore,
C g
R ðl1ÞðxÞ ¼ sup

w2X
fgðl1ÞðwÞ � Rðw; xÞg 6 sup

w2X
fgðl2ÞðwÞ � Rðw; xÞg ¼ C g

R ðl2ÞðxÞ:
It only remains to prove the idempotence. To prove the first inclusion notice that, since gðlÞ belongs to ImðgÞ, it is �-com-
patible with R. That is,
gðlÞðyÞ � Rðy; xÞ 6 gðlÞðxÞ
for all y; x 2 X. Hence,
sup
y2X
fgðlÞðyÞ � Rðy; xÞg 6 gðlÞðxÞ
for all x 2 X. Using this fact, the monotonicity and idempotence of g and the monotonicity of � we get
C g
R ðC

g
R ðlÞÞðxÞ ¼ sup

w2X
fgðC g

R ðlÞÞðwÞ � Rðw; xÞg ¼ sup
w2X

g sup
y2X
fgðlÞðyÞ � Rðy;wÞg

 !
� Rðw; xÞ

( )
6 sup

w2X
fgðgðlÞðwÞÞ � Rðw; xÞg

¼ sup
w2X
fgðlÞðwÞ � Rðw; xÞg ¼ C g

R ðlÞðxÞ
The other inclusion follows immediately from the inclusion property. h
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3.2. The operator C!R

Instead of using the supremum and the t-norm, one can induce a fuzzy operator from a fuzzy relation using the infimum
and the adjoined implication.

Definition 3.4. Let R 2 C0 be a fuzzy relation on X. We define the fuzzy operator induced by R through the inf-! composition
as
C!R ðlÞðxÞ ¼ inf
w2X
fRðx;wÞ ! lðwÞg ð6Þ
Given a fuzzy set l;C!R ðlÞ is the fuzzy subset containing the elements x such that whenever x is in relation through R with
an element w, then w belongs to l [17].
Proposition 3.6. The mapping h : C0�!X0 that sends every fuzzy relation R to the operator C!R induced by means of Eq. (6) is
decreasing. That is, if R 6 S then C!R P C!S .
Proof. It follows from the fact that ! is antitone in the first argument. h
Proposition 3.7. The function h : C0�!X0 that sends every fuzzy relation R to the operator C!R induced by means of Eq. (6) is injec-
tive. That is, if C!R ¼ C!S then R ¼ S.
Proof. We shall prove the contra-positive form that is, if R – S necessarily C!R – C!S . Assume R – S. Then, there exists x; y 2 X
such that Rðx; yÞ– Sðx; yÞ. We can suppose without loss of generality that Rðx; yÞ > Sðx; yÞ. Let us define the fuzzy set lx as
lxðwÞ ¼ Sðx;wÞ. Then,
C!S ðlxÞðxÞ ¼ inf
w2X
fSðx;wÞ ! lxðwÞg ¼ inf

w2X
fSðx;wÞ ! Sðx;wÞg ¼ 1
but
C!R ðlxÞðxÞ ¼ inf
w2X
fRðx;wÞ ! lxðwÞg ¼ inf

w2X
fRðx;wÞ ! Sðx;wÞg 6 Rðx; yÞ ! Sðx; yÞ < 1
by Property 2 from Proposition 2.1. h

Again, fuzzy operators induced by fuzzy preorders or fuzzy indistinguishabilities satisfy certain special properties. They
will allow us to connect permutability of fuzzy relations with permutability of fuzzy operators. It is known that the operator
C!R is a FIO whenever R is a �-indistinguishability relation. The following result shows that it is enough that R is a fuzzy pre-
order. Though the result is implicitly stated in Proposition 15 of [8] and has been proved for fuzzy �-indistinguishability rela-
tions in Corollary 5.8 of [9], we present an alternative proof of it.

Proposition 3.8. Let R be a preorder, then C!R defined as in (6) is a fuzzy interior operator.
Proof. Let us first proof anti-inclusion and monotonicity.
C!R ðlÞðxÞ ¼ inf
w2X
fRðx;wÞ ! lðwÞg 6 Rðx; xÞ ! lðxÞ 6 1! lðxÞ ¼ lðxÞ
Let l; m 2 ½0;1�X and assume l 6 m. Since ! is monotone in the second argument, we have
Rðx;wÞ ! lðwÞ 6 Rðx;wÞ ! mðwÞ 8w 2 X:
Therefore
C!R ðlÞðxÞ ¼ inf
w2X
fRðx;wÞ ! lðwÞg 6 inf

w2X
fRðx;wÞ ! mðwÞg ¼ C!R ðmÞðxÞ
To prove idempotence notice that
C!R ðC
!
R ðlÞÞðxÞ ¼ inf

w2X
fRðx;wÞ ! C!R ðlÞðwÞg ¼ inf

w2X
Rðx;wÞ ! inf

y2X
fRðw; yÞ ! lðyÞg

� �� �
¼ inf

w2X
inf
y2X
fRðx;wÞ ! ðRðw; yÞ

! lðyÞÞg ¼ inf
w2X

inf
y2X
fðRðx;wÞ � Rðw; yÞÞ ! lðyÞgP inf

w2X
inf
y2X
fRðx; yÞ ! lðyÞg ¼ inf

y2X
fRðx; yÞ ! lðyÞg

¼ C!R ðlÞðxÞ:
The other inclusion follows from the anti-inclusion property. h
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Proposition 3.9 [31]. Let E 2 C0 be a fuzzy �-indistinguishability relation and let C!E be the fuzzy operator induced by means of
Eq. (6). Then C!E ðlÞðxÞ satisfies the following properties:

1. C!E is a fuzzy interior operator.

2. C!E ð
V

i2IliÞ ¼
V

i2IC
!
E ðliÞ for any index set I and all li 2 ½0;1�

X .
3. C!E ð xf g ! aÞðyÞ ¼ C!E ð yf g ! aÞðxÞ for all x; y 2 X and any constant a 2 ½0;1� where xf g denotes the singleton of x.

4. C!E ða! lÞ ¼ a! C!E ðlÞ for any constant a 2 ½0;1� and l 2 ½0;1�X .

The converse of Proposition 3.9 also holds.

Proposition 3.10 [31]. There exists a bijection between the set of fuzzy �-indistinguishability relations and the set of fuzzy
operators satisfying all the properties from Proposition 3.9. That is, if C 2 X0 is a fuzzy operator satisfying all the properties from
Proposition 3.9, then there exists a fuzzy �-indistinguishability relation E such that C ¼ C!E .
4. Permutability of fuzzy preoders and fuzzy indistinguishability relations

In this section we study the permutability of fuzzy preoders and fuzzy indistinguishability relations. This will allow us a
further analysis about the permutability of the operators C�R and C!R .

Definition 4.1. Let R; S 2 C0 be fuzzy relations. We say that R and S are permutable or that R and S permute if R � S ¼ S � R
where � is the sup-� composition as in Eq. (3).

Permutability of preorders is closely related to the transitive closure of a fuzzy relation. The transitive closure of a fuzzy
relation R is the smallest upper approximation of R which is �-transitive [2]. More precisely,

Definition 4.2. Let R be a fuzzy relation. We define the transitive closure R of R as the fuzzy relation given by
R ¼ inf
S2Ĉ
R6S

Sf g ð7Þ
where bC denotes the set of all �-transitive fuzzy relations on X.

The explicit formula for the transitive closure is given by R ¼ supn2NRn where the power of R is defined using the sup-�
composition [2]. It is the smallest transitive relation greater than or equal to R. The �-transitive closure preserves reflexivity
and symmetry. Hence, the transitive closure of a reflexive fuzzy relation is fuzzy preorder and the transitive closure of a
reflexive and symmetric relation is an indistinguishability relation.

It was proved in [32] that two fuzzy �-indistinguishability relations defined on a finite set X permute if and only if E � F is
an �-indistinguishability relation. In this case, E � F ¼ maxðE; FÞ. We extend this result to general fuzzy preorders and any set
X, finite or not. Please note that the result is closely related to Theorem 19 of [8]. We need the following lemma.

Lemma 4.1. Let R and P be two fuzzy �-preorders on a set X. Then, R � P 6 maxðR; PÞ.
Proof
R � P 6 maxðR; PÞ �maxðR; PÞ 6 sup
n2N
ðmaxðR; PÞÞn ¼ maxðR; PÞ �
Theorem 4.1. Let R and P be two fuzzy �-preorders on X. Then, R and P are permutable if and only if R � P and P � R are fuzzy �-
preorders. Moreover, R � P is a fuzzy �-preorder if and only if it coincides with the �-transitive closure maxðR; PÞ of maxðR; PÞ.
Proof. Let us first prove the second statement. That is, R � P is a fuzzy �-preorder if and only if it coincides with maxðR; PÞ.
Suppose that R � P is a fuzzy �-preorder. Since R � P P R and R � P P P we have that R � P P maxðR; PÞ. As R � P is a fuzzy pre-
order, it follows that R � P P maxðR; PÞ. From Lemma 4.1, we get R � P ¼ maxðR; PÞ. The other implication follows from the
fact that maxðR; PÞ is reflexive and therefore maxðR; PÞ is a preorder.

Now, let us prove that R and P are permutable if and only if R � P and P � R are fuzzy �-preorders. Assume that R � P ¼ P � R
and let us show that they are fuzzy preorders.

� Reflexivity:

R � Pðx; xÞ ¼ sup

w2X
fRðx;wÞ � Pðw; xÞgP Rðx; xÞ � Pðx; xÞ ¼ 1
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� �-Transitivity: Since R is �-transitive, supw2XfRðx;wÞ � Rðw; yÞg 6 Rðx; yÞ. The same holds for P. Thus,
R � Pðx; yÞ � R � Pðy; zÞ ¼ sup
w2X
fRðx;wÞ � Pðw; yÞg � sup

h2X
fRðy;hÞ � Pðh; zÞg ¼ sup

w;h2X
fRðx;wÞ � Pðw; yÞ � Rðy; hÞ � Pðh; zÞg

6 sup
w;h2X
fRðx;wÞ � ðP � RÞðw;hÞ � Pðh; zÞg ¼ sup

w;h2X
fRðx;wÞ � ðR � PÞðw;hÞ � Pðh; zÞg

¼ sup
w;h;y2X

fRðx;wÞ � Rðw; yÞ � Pðy; hÞ � Pðh; zÞg

¼ sup
y2X

sup
w2X
fRðx;wÞ � Rðw; yÞg � sup

h2X
fPðy;hÞ � Pðh; zÞg

� �
6 sup

y2X
fRðx; yÞ � Pðy; zÞg ¼ R � Pðx; zÞ:

Hence, it follows that R � P ¼maxðR; PÞ ¼ P � R.

The other direction is straightforward. h

For fuzzy indistinguishability relations, the symmetric property facilitates the way. We need just to find that one of the
compositions is an indistinguishability relation to get both of them.

Corollary 4.1. Let E and F be two �-indistinguishability relations on X. Then, E and F are permutable if and only if E � F is a

�-indistinguishability relation. Moreover, this occurs if and only if E � F coincides with the �-transitive closure maxðE; FÞ of
maxðE; FÞ.
Proof. Since E and F are fuzzy preorders, Theorem 4.1 ensures that they permute if and only if E � F ¼ maxðE; FÞ ¼ F � E. Since
maxðE; FÞ is reflexive and symmetric, maxðE; FÞ is an indistinguishability relation. h
5. Permutability of fuzzy consequence operators and fuzzy interior operators

The aim of this section is to study when two fuzzy consequence operators or two fuzzy interior operators permute.
Permutability of fuzzy operators is considered with the usual composition. That is,

Definition 5.1. Let C;C0 be fuzzy operators. We say that C and C0 are permutable or that C and C0 permute if C � C0 ¼ C0 � C
where � denotes the usual composition.

In order to study permutability for these two cases we need to recall the definition of the power of a fuzzy operator and
several of its properties.

Definition 5.2. Let C : ½0;1�X�!½0;1�X be a fuzzy operator. We define Ck for k 2 N as the fuzzy operator defined recursively
as:

1. C1 ¼ C i.e. C1ðlÞðxÞ ¼ CðlÞðxÞ 8l 2 ½0;1�X and 8x 2 X.

2. Ck ¼ CðCk�1Þ i.e. CkðlÞðxÞ ¼ CðCk�1ðlÞÞðxÞ 8l 2 ½0;1�X ;8x 2 X and k P 2.

That is, Ck is the usual composition of the operator C with itself k times.
The following lemma is straightforward. It allows us to define the limit operator for the sequence of powers of either an

inclusive or anti-inclusive operator.

Lemma 5.1. Let C : ½0;1�X�!½0;1�X be a fuzzy operator. Then,

1. If C is inclusive, then Ck is inclusive for all k 2 N.

2. If C is anti-inclusive, then Ck is anti-inclusive for all k 2 N.

3. If C is monotone, then Ck is monotone for all k 2 N.
Proposition 5.1. Let C : ½0;1�X�!½0;1�X be a fuzzy operator.

1. If C is inclusive, then the sequence Ck
n o

k2N
is increasing and convergent. That is, Ck

6 Ckþ1 for all k 2 N and there exists a fuzzy

operator U 2 X0 such that U ¼ limn2NCn ¼ supn2NCn.
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2. If C is anti-inclusive, then the sequence Ck
n o

k2N
is decreasing and convergent. That is, Ckþ1

6 Ck for all k 2 N and there exists a

fuzzy operator L 2 X0 such that L ¼ limn2NCn ¼ infn2NCn.
Proof.

1. Since 1 is an upper bound for CkðlÞðxÞ for all l 2 ½0;1�X , all x 2 X and all k 2 N, the sequences CkðlÞðxÞ
n o

k2N
are increasing

and bounded, thus they converge. Hence, the limit operator exists and it is pointwise defined by
UðlÞðxÞ ¼ lim
n!1

CnðlÞðxÞ ¼ sup
n2N

CnðlÞðxÞ: ð8Þ

2. Dual to the previous one. In this case, 0 is a lower bound for CkðlÞðxÞ for all l 2 ½0;1�X , all x 2 X and all k 2 N. Therefore,
the limit operator exists and it is pointwise defined by
LðlÞðxÞ ¼ lim
n!1

CnðlÞðxÞ ¼ inf
n2N

CnðlÞðxÞ: � ð9Þ

5.1. Permutability of fuzzy consequence operators

Now we are ready to characterize permutability for fuzzy consequence operators. We shall see that the closure of an oper-
ator plays an essential role for permutability.

Similarly to the transitive closure of a fuzzy relation, the closure of certain operators can be defined from its sequence of
powers.

Theorem 5.1. Let C : ½0;1�X�!½0;1�X be an inclusive and monotone fuzzy operator. Then, limn!1Cn ¼ C.
Proof. First of all, let us show that Ck
6 C for all k 2 N by induction on k.

� For k ¼ 1 it is clear that C 6 C.

� Assume that Ck
6 C for a certain k. Then, CkðlÞ# CðlÞ for all l 2 ½0;1�X . Since C 6 C and C is monotone and idempotent, it

follows that
CðCkðlÞÞ# CðCkðlÞÞ# CðCðlÞÞ ¼ CðlÞ:

Since Cn
6 C for all n 2 N, it follows that limn2NCn

6 C.

To prove that limn!1Cn P C let us show that limn!1Cn is a closure operator. Since C is inclusive and monotone, Lemma
5.1 ensures the inclusion and monotonicity of limn!1Cn. For the idempotence, it is straightforward that
lim
n!1

Cn lim
n!1

CnðlÞ
� �

ðxÞ ¼ lim
n!1

CnðlÞðxÞ:
Therefore, limn!1Cn ¼ supn2NCn ¼ C. h
Lemma 5.2. Let C;C0 : ½0;1�X�!½0;1�X be fuzzy consequence operators. Then,
C � C 0 P maxðC;C 0Þ:
Proof. It directly follows from the inclusion and monotonicity properties. Since C is inclusive C0ðlÞ# CðC0ðlÞÞ for all
l 2 ½0;1�X and C � C0 P C0. Since C0 is inclusive l# C0ðlÞ and adding the monotonicity of C we get that CðlÞ# CðC0ðlÞÞ for

all l 2 ½0;1�X and C � C0 P C. Therefore, C � C0 P maxðC;C0Þ. h
Lemma 5.3. Let C;C0 : ½0;1�X�!½0;1�X be two fuzzy consequence operators. Then, maxðC; C0Þ is an inclusive and monotone fuzzy
operator.
Proof. The proof is straightforward. As C and C0 are inclusive, maxðC;C0Þ is also inclusive. For the monotonicity, note that
l1 #l2 implies Cðl1ÞðxÞ 6 Cðl2ÞðxÞ and C0ðl1ÞðxÞ 6 C0ðl2ÞðxÞ for all l 2 ½0;1�X and x 2 X. Hence, maxðC;C0Þðl1ÞðxÞÞ 6
maxðC; C0Þðl2ÞðxÞÞ for all l 2 ½0;1�X and x 2 X. h
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Remark 5.1. Notice that the two lemmas above hold even if C and C0 are not FCO, but only inclusive and monotone. We did
not use idempotence at any point of the proof.

The importance of the closure arises from the fact that preservation of the operator type through composition is the key
for permuting two operators. We are ready to prove that there is only one case where the composition of two fuzzy conse-
quence operators is again a fuzzy consequence operator.

Proposition 5.2. Let C;C0 be fuzzy consequence operators. Then, C � C0 is a fuzzy consequence operator if and only if

C � C0 ¼ maxðC;C0Þ.
Proof. It is sufficient to prove that if C � C0 is a FCO then C � C0 ¼maxðC;C0Þ. The other implication follows from the fact that
the closure of an operator is a FCO.

Assume that C � C0 is a FCO. From Lemma 5.2, C � C0 P maxðC;C0Þ. Therefore, C � C0 P maxðC;C0Þ.
In addition, we have
C � C 0 6maxðC;C 0Þ �maxðC;C 0Þ ¼max2ðC;C 0Þ 6 maxðC;C 0Þ
where the last inequality holds due to Theorem 5.1 and Lemma 5.3. Hence, C � C0 ¼ maxðC;C0Þ. h

At this point, we are ready to characterize permutability of fuzzy consequence operators.

Theorem 5.2. Let C;C0 be fuzzy consequence operators. Then, C and C0 permute if and only if C � C0 and C0 � C are fuzzy
consequence operators.
Proof. First, let us show that if C and C0 permute, then C � C0 and C0 � C are FCO.

� Inclusion: From Lemmas 5.2 and 5.3, C � C0 P maxðC;C0Þ which is inclusive.
� Monotonicity: Suppose l1 #l2. From the monotonicity of C0 it follows that C0ðl1Þ# C0ðl2Þ and from the monotonicity of

C;CðC0ðl1ÞÞ# CðC0ðl2ÞÞ.
� Idempotence:
ðC � C 0ÞððC � C 0ÞðlÞÞðxÞ ¼ ðC � C 0ÞððC 0 � CÞðlÞÞðxÞ ¼ CðC 0ðC 0ðCðlÞÞÞÞðxÞ ¼ CðC0ðCðlÞÞÞðxÞ ¼ CðCðC 0ðlÞÞÞðxÞ ¼ CðC 0ðlÞÞðxÞ
¼ ðC � C 0ÞðlÞðxÞ:

The same arguments hold for C0 � C.
The other implication directly follows from Proposition 5.2. h
Remark 5.2. There are cases of fuzzy consequence operators C and C0 such that C0 � C is a FCO (and therefore

C0 � C ¼ maxðC;C0Þ) but C and C0 do not permute. We illustrate this remark with the following example.
Example 5.1. Let X be a non empty classical set and let a; b 2 R such that 0 < b < a < 1.
Let C0 and C be FCO defined as follows:
C 0ðlÞðxÞ ¼
1 if lðxÞ > b

b if lðxÞ 6 b

�
CðlÞðxÞ ¼

1 if lðxÞ > a
a if lðxÞ 6 a

�

Notice that C0 � C ¼maxðC;C0Þ ¼ X where XðxÞ ¼ 1 for all x 2 X, but C0 � C – C � C0. In fact,
ðC � C0ÞðlÞðxÞ
1 if lðxÞ > b

a if lðxÞ 6 b

�

which is not a FCO.
5.2. Permutability of fuzzy interior operators

Dual results can be obtained for fuzzy interior operators. In this case, preservation of the type of operator is related to the
interior of the minimum.

Theorem 5.3. Let C : ½0;1�X�!½0;1�X be an anti-inclusive and monotone fuzzy operator. Then, limn!1Cn ¼ C.
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Proof. The proof is dual to Theorem 5.1, therefore we will only give a sketch of it. By induction on k, it can be proved that

Ck P C for all k 2 N. Thus, limn!1Cn P C.
To prove the other inequality we need to show that limn!1Cn is an interior operator. Lemmas 2 and 3 ensure the anti-

inclusion and monotonicity properties. The idempotence is obtained using the definition of limit as done in Theorem 5.1.
Hence, limn!1Cn ¼ infn2NCn ¼ C. h
Lemma 5.4. Let C;C0 : ½0;1�X�!½0;1�X be fuzzy interior operators. Then,
C � C 0 6minðC;C0Þ:
Lemma 5.5. Let C;C0 : ½0;1�X�!½0;1�X be fuzzy interior operators. Then, minðC;C0Þ is an anti-inclusive and monotone fuzzy
operator.

Again, permutability is connected to the preservation of the type of operator through composition. There is only one case
for which the composition of two fuzzy interior operators is again a fuzzy interior operator. This determines when permut-
ability appears.

Proposition 5.3. Let C;C0 be fuzzy interior operators. Then, C � C0 is a fuzzy interior operator if and only if C � C0 ¼minðC;C0Þ.
Proof. The proof is analogous to Proposition 5.2. It is sufficient to prove that if C � C0 is a FIO then C � C0 ¼minðC;C0Þ. The
other implication follows from the fact that the fuzzy interior of an operator is a FIO.

Suppose that C � C0 is a fuzzy interior operator. From Lemma 5.4, we know that C � C0 6minðC;C0Þ. Therefore,
C � C0 6 minðC;C0Þ.

In addition, one has,
C � C 0 P minðC;C 0Þ �minðC;C 0Þ ¼min2ðC; C 0ÞP minðC;C 0Þ
where the last inequality holds due to Theorem 5.3 and Lemma 5.5. Hence,
C � C 0 ¼minðC;C 0Þ �
Theorem 5.4. Let C;C0 be fuzzy interior operators. Then, C and C0 permute if and only if C � C0 and C0 � C are fuzzy interior
operators.
Proof. The proof is analogous to the proof of Theorem 5.2. First of all, let us show that if C and C0 permute, then C � C0 and
C0 � C are fuzzy interior operators. Monotonicity and idempotence are proved exactly in the same way than in Theorem 5.2.
Inclusion follows from Lemmas 5.4 and 5.5. Since C � C0 6minðC;C0Þ and minðC;C0Þ is anti-inclusive, so is C � C0. The same
argument holds for C0 � C.

The other implication directly follows from Proposition 5.3. h
6. Permutability of fuzzy operators induced by fuzzy relations through Zadeh’s compositional rule

It is natural to think that permutability of fuzzy relations is connected to the permutability of their induced operators. We
shall study these connections for the fuzzy operators C�R and C!R introduced in Section 3. Recall that for these cases, fuzzy
consequence operators and fuzzy interior operators are obtained from fuzzy preorders and fuzzy indistinguishability rela-
tions. Let us start with the study of the operator induced through Zadeh’s compositional rule.

The composition of two fuzzy operators induced through Zadeh’s compositional rule can be expressed in terms of the
sup-� composition of the inducing relations.

Proposition 6.1. Let R; S be two fuzzy relations and let C�R and C�S be the corresponding fuzzy operators induced through Zadeh’s
compositional rule. Then,
C�R � C�S ¼ C�S�R ¼ CC�S
R ð10Þ
where S � R denotes the sup-� product composition of fuzzy relations.
Proof. For all l 2 ½0;1�X and all x 2 X we have
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C�R � C�SðlÞðxÞ ¼ C�RðC
�
SðlÞÞðxÞ ¼ sup

w2X
fC�SðlÞðwÞ � Rðw; xÞg ¼ CC�S

R

which gives us the second equality. For the first one,
CC�S
R ¼ sup

w2X
fC�SðlÞðwÞ � Rðw; xÞg ¼ sup

w2X
sup
z2X
flðzÞ � Sðz;wÞg � Rðw; xÞ

� �
¼ sup

w;z2X
flðzÞ � Sðz;wÞ � Rðw; xÞg

¼ sup
z2X

lðzÞ � sup
w2X
fSðz;wÞ � Rðw; xÞg

� �
¼ sup

z2X
flðzÞ � S � Rðz; xÞg ¼ C�S�RðlÞðxÞ: �
The relation between permutability of fuzzy relations and permutability of their induced operators can be summarized in
the following theorem.
Theorem 6.1. Let R; S be two fuzzy relations and let C�R and C�S be the corresponding fuzzy operators induced through Zadeh’s
compositional rule. Then, C�R and C�S permute if and only if R and S permute.
Proof. It follows directly from the fact that the function that sends each fuzzy relation R to its induced operator C�R is injec-
tive. Hence,
C�S�R ¼ C�R�S () S � R ¼ R � S �
As we have shown in the previous section, permutability of fuzzy consequence operators is related to the preservation of
the type of operator. For fuzzy consequence operators induced by fuzzy preorders by means of Eq. (4) this occurs if and only
if composition of the fuzzy preorders also preserves the type, i.e. it is again a fuzzy preorder.
Theorem 6.2. Let R; P be fuzzy �-preorders and let C�R and C�P their corresponding fuzzy consequence operators induced through
Zadeh’s compositional rule. Then, C�R and C�P permute if and only if R � P and P � R are fuzzy �-preorders.
Proof. From Theorem 6.1, C�R � C�P ¼ C�P � C�R () R � P ¼ P � R and from Theorem 4.1, R � P ¼ P � R if and only if both are fuzzy
preorders. h
Corollary 6.1. Let R; P be fuzzy �-preorders and let C�R and C�P their corresponding fuzzy consequence operators induced through

Zadeh’s compositional rule. Then, C�R and C�P permute if and only if R � P ¼ P � R ¼maxðP;RÞ.

The left implication of the previous corollary is a direct consequence of Theorem 19 in [8].
For permutability of fuzzy operators induced by fuzzy indistinguishability relations the following result holds.

Theorem 6.3. Let E; F be fuzzy �-indistinguishability relations and let C�E and C�F be their corresponding fuzzy consequence
operators induced through Zadeh’s compositional rule. Then, C�E and C�F permute if and only if E � F is a fuzzy �-indistinguishability
relation.
Proof. It directly follows from Corollary 4.1 and Theorem 6.2. h
Corollary 6.2. Let E; F be fuzzy �-indistinguishability relations and let C�E and C�F be their corresponding fuzzy consequence oper-

ators induced through Zadeh’s compositional rule. Then, C�E and C�F permute if and only if E � F ¼maxðE; FÞ.
Corollary 6.3. Let C;C0 be fuzzy operators satisfying all the conditions of Proposition 3.3. Then, C and C0 permute if and only if
C � C0 also satisfies all these conditions.

In Theorem 6.1, two different ways of writing the composition of fuzzy operators were presented. We shall see another
approach to permutability that can be obtained using the second expression. This allows a sufficient condition for permut-
ability in terms of the concordance between fuzzy relations and fuzzy operators, notion that we introduced in Definition 3.3.

Proposition 6.2. Let R; P be fuzzy preorders and let C�R and C�P be their respective induced FCO by means of Eq. (4). If C�R is �-
concordant with P and C�P is �-concordant with R, then P and R permute and therefore C�R and C�P also permute.
Proof. It directly follows from Theorems 3.1 and 6.2. h
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The following theorem is adapted from [8]:

Theorem 6.4. Let fligi2I # ½0;1�X be an arbitrary family of fuzzy subsets. Then,
Rðx; yÞ ¼ inf
i2I
fliðxÞ ! liðyÞg ð11Þ
is the largest fuzzy preorder for which every fuzzy subset of the family fligi2I is �-compatible with.

Notice that fligi2I is also �-compatible with S for every fuzzy relation S smaller than or equal to (11). Using this result, we
define the largest fuzzy preorder for which a given operator C can be �-concordant with.

Definition 6.1. Let C be a fuzzy operator in X0. The fuzzy relation Rc
c induced by C is given by
Rc
cðx; yÞ ¼ inf

l2½0;1�X
fCðlÞðxÞ ! CðlÞðyÞg ð12Þ
According to Theorem 6.4, the fuzzy preorder Rc
c defined above gives an upper bound which is sufficient for a relation to

be �-concordant with the given operator C. Hence, if a fuzzy relation S is smaller than or equal to Rc
c for a certain fuzzy oper-

ator C, every fuzzy subset of the image of C will be compatible with S.
Proposition 6.3. Let S be a fuzzy relation such that S 6 Rc
c for a certain C 2 X0. Then, C is �-concordant with S.
Proof. Straightforward. h
Corollary 6.4. Let R; P be fuzzy preorders and let C�R and C�P be their respective induced FCO. If
R 6 R
c�P
c�P

and P 6 R
c�R
c�R
;

then R and P permute. Therefore, so do C�R and C�P.
Proof. It directly follows from Propositions 6.2, 6.3 and Corollary 6.1.
7. Permutability of fuzzy operators induced by fuzzy relations through inf-! composition

Composition of operators induced by means of the inf-! composition as defined by (6) can be written in terms of the
sup-� composition of the inducing relations.

Proposition 7.1. Let R; S be two fuzzy relations and let C!R and C!S be the corresponding fuzzy operators induced through the
inf -! composition. Then,
C!R � C!S ¼ C!R�S ð13Þ
where S � R denotes the sup-� product composition of fuzzy relations.
Proof. For all l 2 ½0;1�X and all x 2 X we have
C!R � C!S ðlÞðxÞ ¼ inf
w2X
fRðx;wÞ ! C!S ðlÞðxÞg ¼ inf

w2X
Rðx;wÞ ! inf

y2X
fSðw; yÞ ! lðyÞg

� �� �
¼ inf

w;y2X
fRðx;wÞ ! fSðw; yÞ ! lðyÞgg ¼ inf

y2X
inf
w2X
ffRðx;wÞ � Sðw; yÞg ! lðyÞg

¼ inf
y2X

sup
w2X
fRðx;wÞ � Sðw; yÞg ! lðyÞ

� �
¼ inf

y2X
fðR � SÞðx; yÞ ! lðyÞg ¼ C!R�SðlÞðxÞ
where most of the equalities follow from the properties in Proposition 2.1. h

As a consequence, we obtain similar results to the ones obtained for the operators induced by Zadeh’s compositional rule.

Theorem 7.1. Let R; S be two fuzzy relations and let C!R and C!S be the corresponding fuzzy operators induced through the inf-!
composition. Then, C!R and C!S permute if and only if R and S permute.
Proof. One the one side, assume that S � R ¼ R � S. Then, from the previous proposition it follows that
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C!R � C!S ðlÞðxÞ ¼ C!R�SðlÞðxÞ ¼ C!S�RðlÞðxÞ ¼ C!S � C!R ðlÞðxÞ
On the other side, from Proposition 3.7, C!R�S ¼ C!S�Rimplies R � S ¼ S � R. h
Theorem 7.2. Let R; P be fuzzy �-preorders and let C!R and C!P their corresponding fuzzy interior operators induced through the
inf-! composition by means of (6). Then, C!R and C!P permute if and only if R � P and P � R are fuzzy �-preorders.
Proof. It directly follows from Theorems 4.1 and 7.1. h
Corollary 7.1. Let R; P be fuzzy �-preorders and let C!R and C!P the corresponding fuzzy interior operators induced by means of (6).

Then, C!R and C!P permute if and only if R � P ¼ P � R ¼maxðP;RÞ.

The left implication of the previous corollary is a direct consequence of Theorem 19 in [8].
For permutability of fuzzy operators induced by fuzzy indistinguishability relations the following holds.

Theorem 7.3. Let E; F be fuzzy �-indistinguishability relations and let C!E and C!F be their corresponding fuzzy interior operators
induced by means of (6). Then, C!E and C!F permute if and only if E � F is a fuzzy �-indistinguishability relation.
Proof. It directly follows from Corollary 4.1 and Theorem 7.2. h
Corollary 7.2. Let E; F be fuzzy �-indistinguishability relations and let C!E and C!F be their corresponding fuzzy interior operators

induced by means of (6). Then, C!E and C!F permute if and only if E � F ¼maxðE; FÞ.
Corollary 7.3. Let C;C0 be fuzzy operators satisfying all the conditions of Proposition 3.9. Then, C and C0 permute if and only if
C � C0 also satisfies all these conditions.
8. Composition without permutability

In the previous sections, we have seen that for both fuzzy consequence operators and fuzzy interior operators, permut-
ability is completely connected with the preservation of the operator type through composition. That is, to obtain permut-
ability of two fuzzy consequence operators, compositions in both directions must be fuzzy consequence operators again.
Similarly, the compositions of two fuzzy interior operators must be fuzzy interior operators in order to find permutability
between them. In the case of the fuzzy operators C�R and C!R induced by fuzzy relations, permutability of the fuzzy relations
is a necessary and sufficient condition in order to find permutability between the induced operators.

Nevertheless, even when permutability does not appear certain properties are still transferred from the composition of
relations to the composition of the induced operators.

Proposition 8.1. Let R; P be fuzzy �-preorders. Then, the fuzzy operator C�P�R is inclusive and monotone.
Proof. From Lemmas 5.2 and 5.3, C�P�R P maxðC�P ;C
�
RÞ which is inclusive. Hence, so is C�P�R. To prove monotonicity assume

l # m, then
C�P�RðlÞðxÞ ¼ sup
w2X
flðwÞ � ðP � RÞðw; xÞg 6 sup

w2X
fmðwÞ � ðP � RÞðw; xÞg ¼ C�P�RðmÞðxÞ �
Proposition 8.2. Let E; F be fuzzy �-indistinguishability relations. Then, C�E�F satisfies the inclusion and monotony properties from
the definition of FCO. Moreover, it satisfies Properties 2, 4 of Proposition 3.3.
Proof. Inclusion and monotonicity follows from Proposition 8.1. Since both C�E and C�F satisfy Properties 2 and 4, it follows that
C�E C�F
_
i2I

li

 ! !
¼ C�E

_
i2I

C�FðliÞ
 !

¼
_
i2I

C�EðC
�
FðliÞÞ
for any index set I and all li 2 ½0;1�
X and
C�EðC
�
Fða � lÞÞ ¼ C�Eða � C�FðlÞÞ ¼ a � C�EðC

�
FðlÞÞ
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for any constant a 2 ½0;1� and l 2 ½0;1�X . h

We can weaken the conditions imposed to the inducing relations and study the composition of operators induced by
reflexive fuzzy relations.

Proposition 8.3. Let R; P be reflexive fuzzy relations. Then, the fuzzy operator C�P�R is inclusive and monotone.
Proof. Notice that proof of Proposition 8.1 holds for reflexive relations since we did not use �-transitivity. h
Remark 8.1. Observe that C�P�Ris always monotone even if R and P are not reflexive.

This result allows us to connect the operator induced by the transitive closure of the sup-� composition of two reflexive
fuzzy relations with the closure of the operator that this composition induces in the following way.

Theorem 8.1. Let R; P be reflexive fuzzy relations. Then, C�R�P ¼ C�R�P.
Proof. Since R and P are reflexive, so is R � P. Then, by the definition of closure, R � P 6 R � P. Then, from Corollary 3.1 we get
C�R�P 6 C�R�P . As R � P is a fuzzy �-preoder, C�R�P is a FCO. Therefore, since the closure is the smallest FCO greater or equal to a

given one we have C�R�P 6 C�R�P .
On the other side, from Proposition 8.3, C�R�P is inclusive and monotone. Hence, by Proposition 5.1,
C�R�P ¼ lim
n!1
ðC�R�PÞ

n ¼ sup
n2N
ðC�R�PÞ

n P ðC�R�PÞ
n 8n 2 N:
From the recursive definition of the power of a fuzzy operator (Definition 5.2), we have ðC�R�PÞ
n ¼ C�ðR�PÞn , thus
C�R�P ¼ sup
n2N
ðC�R�PÞ

n P ðC�R�PÞ
n ¼ C�ðR�PÞn 8n 2 N:
Therefore, C�R�P P C�supn2NðR�PÞn ¼ C�R�P and C�R�P ¼ C�R�P . h
9. Conclusions

Permutability of fuzzy consequence operators and fuzzy interior operators does not always occur. However, there are
cases for which the order of composition does not affect the result. We have shown that this fact is completely connected
to the preservation of the operator type through composition.

For the particular cases of fuzzy consequence operators induced through Zadeh’s compositional rule and fuzzy interior
operators induced using the inf-! composition we proved that permutability of the relations is connected to permutability
of the induced operators. In fact, permutability of the starting relations appears to be a necessary and sufficient condition in
order to obtain permutability of the induced operators.

Finally, we have seen that for reflexive relations, the operator induced by the transitive closure of their composition coin-
cides with the closure of the operator that their composition induces.

To conclude, we summarize the most important results that we have obtained. First of all, we enumerate the results about
permutability of fuzzy preorders and fuzzy indistinguishability relations that have been the key to analyze permutability of
their induced fuzzy operators:

1. R; P fuzzy �-preorders. Then, R � P ¼ P � R() R � P and P � R are fuzzy �-preorders.
2. E; F fuzzy �-similarities. Then, E � F ¼ F � E() E � F is a fuzzy �-similarity.
3. R � P preserves type (similarity or preorder), R � P ¼maxðR; PÞ.

Permutability of general fuzzy consequence and interior operators can be summarized in the following two results.

4. C;C0 FCO. C and C0 permute if and only if C � C0 ¼ C0 � C ¼maxðC;C0Þ.
5. C;C0 FIO. C and C0 permute if and only if C � C0 ¼ C0 � C ¼minðC;C0Þ.

Several results about permutability of fuzzy operators induced by fuzzy relations have been obtained. Results about
permutability of fuzzy preorders and similarities allow some of the following characterizations. The notion of concor-
dance between fuzzy relations and fuzzy operators also plays a relevant role (see item 11).

6. R; S fuzzy relations. C�R � C�S ¼ C�S�R ¼ CC�S
R .
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7. R; S fuzzy relations. C!R � C!S ¼ C!R�S.
8. R; S fuzzy relations. Then, C�R � C�S ¼ C�S � C�R () R � S ¼ S � R.
9. R; S fuzzy relations. Then, C!R � C!S ¼ C!S � C!R () R � S ¼ S � R.

10. R; S fuzzy �-preorders. Then, C�R � C�S ¼ C�S � C�R () R � S and S � R are fuzzy �-preorders.
11. R; P fuzzy �-preorders. C�R P �-concordant and C�P R �-concordant. Then, C�R � C�P ¼ C�P � C�R.
12. E; F fuzzy �-indistinguishabilities. Then, C�E � C�F ¼ C�F � C�E () E � F is a fuzzy �-indistinguishability.
13. R; S fuzzy �-preorders. Then, C!R � C!S ¼ C!S � C!R () R � S and S � R are fuzzy �-preorders.
14. E; F fuzzy �-indistinguishabilities. Then, C!E � C!F ¼ C!F � C!E () E � F is a fuzzy �-indistinguishability.

15. R; S reflexive fuzzy relations. Then C�R�S ¼ C�S�R.
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[4] R. Bělohlávek, Fuzzy Relational Systems: Foundations and Principles, IFSR International Series on Systems Science and Engineering, Kluwer Academic/

Plenum Publishers, 2002.
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