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In this work, we study when an aggregation operator preserves the structure of 𝑇 -subgroup 
of groups whose subgroup lattice is a chain. There are two widely used ways of defining the 
aggregation of structures in fuzzy logic, previously named on sets and on products. We will focus 
our attention on the one called aggregation on products. When the lattice of subgroups is not a 
chain, it is known that the dominance relation between the aggregation operator and the t-norm 
is crucial. We show that this property is again important for some of the groups in this study. 
However, for the rest of them, we must define a new property weaker than domination, that will 
allow us to characterize those operators which preserve 𝑇 -subgroups.

1. Introduction

Information fusion in data handling and interpretation is essential in a wide variety of fields in science. Aggregation operators are 
functions that allow us to perform this fusion and have a strong presence in current research (see for instance [6,9,10,17]). When the 
data to be aggregated are endowed with a specific structure, it is of particular interest to know under which conditions this structure is 
preserved under fusion. In particular, the study of the preservation of fuzzy structures has been gaining relevance since its beginnings 
in [13,21] including structures such as 𝑇 -indistinguishability operators or fuzzy implications (see, for instance, [12,14,23,25,27]). 
In all these studies, the preservation of structures under aggregation is studied according to two different definitions, but without 
highlighting this distinction. For example, Saminger, Mesiar and Bodenhofer proved in [27] that an aggregation operator 𝐴 preserves 
𝑇 -indistinguishability operators if and only if 𝐴 dominates the t-norm 𝑇 . However, they did so with a definition of aggregation 
of 𝑇 -indistinguishabilities different from the one later used by Drewniak and Dudziak in [12]. Although they obtained the same 
equivalence in that case, this is different if we look at other fuzzy structures. In 2021, Pedraza, Rodriguez-López and Valero (see 
[22]) fixed the aggregation notation on sets and on products to be able to distinguish both definitions. They also showed that these 
definitions are not equivalent in the context of preservation of fuzzy quasi-metrics among others. A more exhaustive distinction 
between those works using either definitions of aggregation of fuzzy structures can be found in [3].

Since its definition by Rosenfeld in [26], a large amount of works regarding fuzzy subgroups have been developed (see [1,11,
20,28]). In this context, there exists a close relation between 𝑇 -subgroups and 𝑇 -indistinguishability operators (see [8,15]). More 
precisely, we can define 𝑇 -indistinguishability operators making use of 𝑇 -subgroups and vice versa. This relation provides several 
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fields of possible application of 𝑇 -subgroups such us image processing, fuzzy classification systems under uncertainty, imprecision 
or vagueness, or approximate reasoning (see, for instance, [7,24,29]).

The study of the preservation of 𝑇 -subgroups started in [4], where a characterization of the aggregation operators that preserve 
𝑇𝑀 -subgroups on sets was given. Note that 𝑇𝑀 denotes the minimum t-norm. Some of the authors of the present contribution 
continued in the same direction with a more general study (see [3]), which analyzed the relationships between the two definitions 
of aggregation of 𝑇 -subgroups. In these papers, they had to distinguish groups according to their lattice of subgroups. We denote 
the lattice of subgroups of a group 𝐺 by 𝐿𝑎𝑡(𝐺) and it is said that this lattice is a chain if for all 𝐻1, 𝐻2 ∈ 𝐺 subgroups of 𝐺, either 
𝐻1 ⊆ 𝐻2 or 𝐻2 ⊆ 𝐻1.  shall be the set of all groups whose lattice of subgroups is a chain, i.e.:

 = {𝐺 |𝐺 is a group and 𝐿𝑎𝑡(𝐺) is a chain}.

The authors of [3] found necessary and sufficient conditions for an aggregation operator to preserve T-subgroups on both products

and sets when we have an ambient group 𝐺 ∉ . Moreover, they showed which aggregation operators preserve 𝑇𝑀 -subgroups when 
𝐺 ∈ . However, the study of aggregation operators that preserve 𝑇 -subgroups for arbitrary t-norms and 𝐺 ∈  has not yet been 
considered. In the context of the aforementioned applications, it is interesting to study the case of t-norms apart from the minimum 
to extend the possibilities for practitioners.

Section 2 establishes some important definitions that will be used throughout the article. Section 3 presents some background 
results that will be very useful in the sequent proofs and discussion. Moreover, we present some new important definitions. In 
Section 4, we study the necessary and sufficient conditions for the preservation of 𝑇 -subgroups on products when the ambient group 
𝐺 ∈ , and we provide further implications on sets. Finally, Section 5 gives a general overview and establishes some open problems.

2. Preliminaries

In this section we present some general results and definitions that will be useful throughout the paper.

Definition 2.1 ([19]). A triangular norm, t-norm for short, is a binary operation 𝑇 ∶ [0, 1]2 → [0, 1] such that for all 𝑥, 𝑦, 𝑧 ∈ [0, 1] the 
following axioms are satisfied:

𝑇 1. 𝑇 (𝑥, 𝑦) = 𝑇 (𝑦, 𝑥). (Commutativity)
𝑇 2. 𝑇 (𝑥, 𝑇 (𝑦, 𝑧)) = 𝑇 (𝑇 (𝑥, 𝑦), 𝑧). (Associativity)
𝑇 3. 𝑇 (𝑥, 𝑦) ≤ 𝑇 (𝑥, 𝑧) whenever 𝑦 ≤ 𝑧. (Monotonicity)
𝑇 4. 𝑇 (𝑥, 1) = 𝑥. (Boundary condition)

Example 2.2. Here we present some important examples of t-norms:

1. 𝑇𝑀 (𝑥, 𝑦) =min{𝑥, 𝑦}. (Minimum t-norm)

2. 𝑇𝐷(𝑥, 𝑦) =
{

0 if max{𝑥, 𝑦} < 1,
min{𝑥, 𝑦} if max{𝑥, 𝑦} = 1.

(Drastic t-norm)

3. 𝑇𝑃 (𝑥, 𝑦) = 𝑥𝑦. (Product t-norm)
4. 𝑇𝐿(𝑥, 𝑦) =max{𝑥 + 𝑦 − 1, 0}. (Łukasiewicz t-norm)

5. 𝑇𝑃∕𝑠(𝑥, 𝑦) =
{𝑥𝑦

𝑠
if max{𝑥, 𝑦}< 1

min{𝑥, 𝑦} if max{𝑥, 𝑦} = 1
with 𝑠 ∈ [1, ∞).

Remark 2.3. The family of t-norms 𝑇𝑃∕𝑠 from the previous example satisfies:

𝑇𝐷 ≤ 𝑇𝑃∕𝑠2 ≤ 𝑇𝑃∕𝑠1 ≤ 𝑇𝑃 for 1 ≤ 𝑠1 < 𝑠2 <∞.

These t-norms are going to be instrumental in the obtention of some counterexamples in this manuscript.

Fuzzy subgroups were first defined by Rosenfeld in [26]. In [1,2], Anthony and Sherwood redefined them to include an arbitrary 
t-norm 𝑇 and a normalization condition. Let 𝑋 be a non-empty set and let [0, 1]𝑋 denote the set of all fuzzy sets 𝜇 ∶𝑋 → [0, 1].

Definition 2.4. Let 𝐺 be a group, 𝜇 ∈ [0, 1]𝐺 a fuzzy subset of 𝐺 and 𝑇 a t-norm. 𝜇 is called fuzzy 𝑇 -subgroup of 𝐺 if:

G1. 𝜇(𝑒) = 1 where 𝑒 ∈𝐺 denotes the neutral element.
G2. 𝜇(𝑥) = 𝜇(𝑥−1) ∀𝑥 ∈𝐺.
G3. 𝜇(𝑥𝑦) ≥ 𝑇 (𝜇(𝑥), 𝜇(𝑦)) ∀𝑥, 𝑦 ∈𝐺.

Definition 2.5 ([26]). Let 𝐺 be a group and 𝜇 a fuzzy set of 𝐺. For each 𝑡 ∈ [0, 1], the level set 𝜇𝑡 and the strict level set 𝜇𝑡 are defined 
as follows:
2
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𝜇𝑡 = {𝑥 ∈𝐺 | 𝜇(𝑥) ≥ 𝑡}; 𝜇𝑡 = {𝑥 ∈𝐺 | 𝜇(𝑥) > 𝑡}.

The support of 𝜇 is defined by supp 𝜇 = 𝜇0.

Proposition 2.6 ([11]). Let 𝐺 be a group and 𝜇 a fuzzy set of 𝐺, then 𝜇 is a 𝑇𝑀 -subgroup of 𝐺 if and only if all its non-empty level sets 
are subgroups of 𝐺 and 𝜇(𝑒) = 1.

Definition 2.7 ([9]). Let 𝑨 ∶
⋃

𝑛∈ℕ[0, 1]𝑛 → [0, 1] be a function. 𝑨 is called aggregation operator or aggregation function if:

A1. For all 𝒙 = (𝑥1, … , 𝑥𝑛), 𝒚 = (𝑦1, … , 𝑦𝑛) ∈ [0, 1]𝑛 such that 𝑥𝑖 ≤ 𝑦𝑖 ∀𝑖 ∈ {1, … , 𝑛}, we have 𝑨(𝑥1, … , 𝑥𝑛) ≤𝑨(𝑦1, … , 𝑦𝑛).
A2. 𝑨(𝟎) =𝑨(0, … , 0) = 0 and 𝑨(𝟏) =𝐴(1, … , 1) = 1.
A3. 𝑨(𝑥) = 𝑥 for all 𝑥 ∈ [0, 1].

Each aggregation operator 𝑨 can be represented as a collection of 𝑛-ary aggregation operators 𝐴(𝑛) ∶ [0, 1]𝑛 → [0, 1] satisfying A1 and 
A2 if 𝑛 ≥ 2 and additionally A3 if 𝑛 = 1. In order to shorten some of the proofs, we will use the notation 𝐴 instead of 𝐴(𝑛) if the context 
is clear enough.

We can follow [3] to define the aggregation of fuzzy 𝑇 -subgroups, both on products and on sets.

Definition 2.8 ([3]). Let 𝑨 ∶
⋃

𝑛∈ℕ[0, 1]𝑛 → [0, 1], be an aggregation operator, 𝑇 a t-norm and 𝑛 ∈ ℕ. Given 𝑛 fuzzy 𝑇 -subgroups 
𝜇1, … , 𝜇𝑛 of a group 𝐺, we denote by 𝝁 the map 𝝁 ∶𝐺 → [0, 1]𝑛, with:

𝝁(𝑥) = (𝜇1(𝑥),… , 𝜇𝑛(𝑥))

for 𝑥 in 𝐺 and we define the aggregation of fuzzy subgroups on sets as 𝐴◦𝝁, where:

𝐴◦𝝁(𝑥) =𝐴(𝜇1(𝑥),… , 𝜇𝑛(𝑥)).

We will say that A preserves the structure of T-subgroup on sets if and only if 𝐴◦𝝁 is a T-subgroup for any 𝝁 as above.
In the same way �̃� denotes �̃� ∶

∏𝑛

𝑖=1 𝐺 → [0, 1]𝑛 with:

�̃�(𝒙) = (𝜇1(𝑥1),… , 𝜇𝑛(𝑥𝑛))

for 𝒙 = (𝑥1, … , 𝑥𝑛) in ∏𝑛

𝑖=1 𝐺. We define the aggregation of fuzzy subgroups on products as 𝐴◦�̃�, where:

𝐴◦�̃�(𝒙) =𝐴(𝜇1(𝑥1),… , 𝜇𝑛(𝑥𝑛)).

As before, we state that A preserves the structure of T-subgroup on products if and only if 𝐴◦�̃� is a T-subgroup for any �̃� as 
above.

3. Aggregation of 𝑻 -subgroups and domination

In this section we compile some known results on aggregation of 𝑇 -subgroups that will be useful throughout this paper. We also 
introduce the dominance relation and we define new weaker types of domination that are going to be determinant in the following.

Proposition 3.1 ([3]). Let 𝐺 be a non-trivial group, 𝑨 ∶
⋃

𝑛∈ℕ[0, 1]𝑛 → [0, 1] an aggregation operator, and 𝜇1, … , 𝜇𝑛 T-subgroups, then the 
fuzzy subgroup axioms 𝐺1 and 𝐺2 are satisfied by 𝐴◦𝝁 and 𝐴◦�̃�.

Hence, in order to characterize the situations where 𝑨 preserves 𝑇 -subgroups of 𝐺, it is enough to prove whether or not an 
aggregation operator preserves the fuzzy subgroup axiom 𝐺3.

Proposition 3.2 in [3] shows that the preservation of 𝑇 -subgroups on products implies the preservation of 𝑇 -subgroups on sets.

Proposition 3.2 ([3]). Let 𝐺 be a non trivial group, 𝑇 a t-norm, and 𝑨 an aggregation function. If 𝑨 preserves the structure of 𝑇 -subgroup 
on products then 𝑨 also preserves this structure on sets.

The dominance relation introduced in [27] plays a key role in the preservation of different fuzzy properties as is the case of 
𝑇 -indistinguishability operators or T-subgroups of a group 𝐺 ∉  (see [3,22,27]).

Definition 3.3 ([27]). Consider an n-ary aggregation operator 𝐴(𝑛) and an m-ary aggregation operator 𝐵(𝑚). We say that 𝐴(𝑛) domi-
nates 𝐵(𝑚) if for all 𝑥𝑖,𝑗 ∈ [0, 1] with 𝑖 ∈ {1, … , 𝑚} and 𝑗 ∈ {1, … , 𝑛}, the following property holds:

𝐵(𝑚)(𝐴(𝑛)(𝑥1,1,… ,𝑥1,𝑛),… ,𝐴(𝑛)(𝑥𝑚,1,… , 𝑥𝑚,𝑛))

≤𝐴(𝑛)(𝐵(𝑚)(𝑥1,1,… , 𝑥𝑚,1),… ,𝐵(𝑚)(𝑥1,𝑛,… , 𝑥𝑚,𝑛)).
3
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Let now 𝑨 and 𝑩 be aggregation operators. We say that 𝑨 dominates 𝑩 if 𝐴(𝑛) dominates 𝐵(𝑚) for all 𝑛, 𝑚 ∈ ℕ.

Remark 3.4. Given that t-norms are associative aggregation operators, 𝑨 dominates 𝑇 if and only if 𝐴(𝑛) dominates 𝑇 for all integers 
𝑛 > 1. That is, for each 𝑛:

𝐴(𝑇 (𝑥1, 𝑦1),… , 𝑇 (𝑥𝑛, 𝑦𝑛)) ≥ 𝑇 (𝐴(𝑥1,… , 𝑥𝑛),𝐴(𝑦1,… , 𝑦𝑛))

for all (𝑥1, … , 𝑥𝑛), (𝑦1, … , 𝑦𝑛) ∈ [0, 1]𝑛.

The domination property is quite strong and it always ensures the preservation of 𝑇 -subgroups as we can see in [3] (Theorem 
3.14).

Theorem 3.5 ([3]). Let 𝐺 be a group and 𝑇 a t-norm. If 𝑨 is an aggregation operator that dominates 𝑇 , then 𝑨 preserves the structure of 
𝑇 -subgroup on products and hence on sets.

When the subgroup lattice of the ambient group is not a chain, the aggregation operators preserving the structure of 𝑇 -subgroup 
on sets are the same that the ones preserving this structure on products. Moreover, the only operators to do so are those which 
dominate the t-norm. This is a consequence of Theorem 3.18 and Corollary 3.19 in [3].

Theorem 3.6 ([3]). Let be a group 𝐺 ∉ , 𝑇 a t-norm and 𝑨 ∶
⋃

𝑛∈ℕ[0, 1]𝑛 → [0, 1] an aggregation operator. The following are equivalent:

(i) 𝑨 dominates 𝑇 .

(ii) 𝑨 preserves the structure of 𝑇 -subgroup on sets.
(iii) 𝑨 preserves the structure of 𝑇 -subgroup on products.

Note that in the previous theorem we have imposed 𝐺 ∉  in order to obtain the converse implication of Theorem 3.5 for the 
aggregation of 𝑇 -subgroups on sets and on products.

From now on, we will focus on the study of preservation of 𝑇 -subgroups when 𝐺 ∈ . Theorems 3.5 and 3.10 in [3] show what 
happens in case of 𝑇 = 𝑇𝑀 . They can be stated as follows.

Theorem 3.7 ([3]). Let 𝐺 be a non-trivial group. The following are equivalent:

(i) 𝐺 ∈ .

(ii) Every aggregation function preserves the structure of 𝑇𝑀 -subgroup on sets.

Theorem 3.8 ([3]). Let 𝐺 be a group and 𝑨 an aggregation function. Then the following are equivalent:

(i) 𝑨 dominates the minimum t-norm, 𝑇𝑀 .

(ii) 𝑨 preserves the structure of 𝑇𝑀 -subgroup on products.

Remark 3.9. Note that all proofs in [3] include both finite and infinite groups. For the subsequent results, the two possibilities will 
have to be considered separately. The case of infinite groups is studied in subsection 4.5.

Thus, the preservation of 𝑇 -subgroups, both on sets and on products when 𝑇 ≠ 𝑇𝑀 and 𝐺 ∈  was not addressed in previous 
studies and will be the subject of the next section. However, we must first define some new concepts related to domination which 
play a central role in this work. In order to do that, we recall some notation and properties regarding t-norms.

Definition 3.10 ([18]). Let 𝑇 be a t-norm, 𝑥 ∈ [0, 1] and 𝑘 ∈ℕ. We define 𝑥(𝑘)
𝑇

as:

𝑥
(𝑘)
𝑇

=

{
𝑥 if 𝑘 = 1,
𝑇 (𝑥(𝑘−1)

𝑇
, 𝑥) if 𝑘 ≠ 1.

Remark 3.11. Note that, in the sense of Definition 3.10, the sequence {𝑥(𝑘)
𝑇
}𝑘∈ℕ is non-increasing due to the monotonicity of the 

t-norm 𝑇 .

Lemma 3.12 ([5]). Let 𝜇 be a 𝑇 -subgroup of a group 𝐺 and 𝑘 ∈ ℕ. Then:

𝜇(𝑎𝑘) ≥ 𝜇(𝑎)(𝑘) ∀𝑎 ∈𝐺.

𝑇

4
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Lemma 3.13 ([5]). Given a t-norm 𝑇 and a number 𝑘 ∈ ℕ greater than or equal to 2, we have:

𝑥
(𝑘)
𝑇

= 𝑇 (𝑥(𝑘1)
𝑇

, 𝑥
(𝑘2)
𝑇

)

for all 𝑥 ∈ [0, 1] and 𝑘1, 𝑘2 ∈ℕ such that 𝑘1 + 𝑘2 = 𝑘.

The next definition suggests weaker forms of domination.

Definition 3.14 (Type-k domination). Given 𝑘 ∈ ℕ, we say that an aggregation operator 𝑨, type-𝑘 dominates a t-norm 𝑇 if:

𝐴(𝑇 (𝑥1, 𝑦1),… , 𝑇 (𝑥𝑛, 𝑦𝑛)) ≥ 𝑇 (𝐴(𝑥1,… , 𝑥𝑛),𝐴(𝑦1,… , 𝑦𝑛)), (1)

for all (𝑥1, … , 𝑥𝑛), (𝑦1, … , 𝑦𝑛) ∈ [0, 1]𝑛 such that for each 𝑖 ∈ {1, … , 𝑛} one of the following conditions applies:

- max{𝑥𝑖, 𝑦𝑖} = 1.
- min

{
𝑥𝑖, 𝑦𝑖

}
≥ (max

{
𝑥𝑖, 𝑦𝑖

}
)(𝑘)
𝑇

.

We denote this fact by 𝑨≫𝑘 𝑇 .
For 𝑘 = 0 we say that 𝑨 type-0 dominates 𝑇 if (1) holds for all (𝑥1, … , 𝑥𝑛), (𝑦1, … , 𝑦𝑛) ∈ [0, 1]𝑛 such that max{𝑥𝑖, 𝑦𝑖} = 1 for each 

𝑖 ∈ {1, … , 𝑛} and we denote it 𝑨≫0 𝑇 .

Remark 3.15. Let us list some of the features of type-𝑘 domination:

1. If we set 𝑘 = 1, the statement min{𝑥, 𝑦} ≥ (max{𝑥, 𝑦})(𝑘)
𝑇

is equivalent to the condition 𝑥 = 𝑦 for any 𝑥, 𝑦 ∈ [0, 1]. Therefore, 𝑨≫1 𝑇

if and only if the inequality (1) holds for all (𝑥1, … , 𝑥𝑛), (𝑦1, … , 𝑦𝑛) ∈ [0, 1]𝑛 such that for each 𝑖 ∈ {1, … , 𝑛} either max{𝑥𝑖, 𝑦𝑖} = 1
or 𝑥𝑖 = 𝑦𝑖 (Fig. 1b).

2. Note that type-𝑘 domination relaxes the conditions of domination since it reduces the domain where inequality (1) is required. 
This domain restriction only depends on the t-norm and the value of 𝑘. Moreover:

(max{𝑥, 𝑦})(𝑘)
𝑇

≥ (max{𝑥, 𝑦})(𝑘+1)
𝑇

≥ 0

for all 𝑘 ≥ 1. This suggests that there are going to be more points satisfying the inequality min{𝑥, 𝑦} ≥ (max{𝑥, 𝑦})(𝑘+1)
𝑇

than 
min{𝑥, 𝑦} ≥ (max{𝑥, 𝑦})(𝑘)

𝑇
. Hence, the property 𝑨≫𝑘+1 𝑇 is more restrictive than 𝑨≫𝑘 𝑇 and, therefore, closer to the property of 

domination in that respect. As a consequence, given 𝑘1, 𝑘2 ∈ℕ where 𝑘1 ≥ 𝑘2, we have the following chain of implications:

𝑨≫ 𝑇 ⇒𝑨≫𝑘1
𝑇 ⇒𝑨≫𝑘2

𝑇 ⇒𝑨≫0 𝑇 .

Domination is then stronger than type-𝑘 domination for all 𝑘 ∈ ℕ and this in turn, is stronger than type-0 domination. We will 
see in later examples that these dominations are different in general.

3. In Fig. 1 we show for which points inequality (1) should be imposed so that 𝑨 ≫𝑘 𝑇 for some chosen 𝑘 and different t-norms. 
This inequality should be true whenever any point (𝑥𝑖, 𝑦𝑖) lies in the shaded area for all 𝑖 ∈ {1, … , 𝑛}. Note that these areas do 
not depend on the selected t-norm when 𝑘 = 0 (Fig. 1a) or 𝑘 = 1 (Fig. 1b). However, taking 𝑇𝑃 and 𝑇𝐿 we can check that this is 
not true for greater values of 𝑘 (Figs. 1c, 1d, 1e and 1f). Hence when defining type-k domination we are restricting the domain 
where inequality (1) holds. This restriction only depends on the t-norm.

Type-𝑘 domination will play a fundamental role in the preservation of 𝑇 -subgroups on products when 𝐺 ∈ .

4. Aggregation on products when the subgroup lattice of the ambient group is a chain

The aim of this section is to analyze the preservation of 𝑇 -subgroups on products when 𝑇 is an arbitrary t-norm. That is, to 
find a result analogous to Theorem 3.8 without imposing the t-norm to be the minimum. The dominance property will again play 
a crucial role since, in any case, it is a sufficient condition for an aggregation operator to preserve 𝑇 -subgroups on products (hence 
also on sets). This fact allows us to claim that those aggregation operators that preserve 𝑇 -subgroups of 𝐺 ∈  must be related to 𝑇
by means of a property equal to or less restrictive than domination. Indeed, when domination is too strong, type-𝑘 domination will 
be the appropriate condition to ensure the preservation of the 𝑇 -subgroup structure. All the main results of this article are intended 
to elucidate the nature of these relations.

First of all, we must bear in mind that the only finite groups where 𝐿𝑎𝑡(𝐺) is a chain are cyclic. Moreover, those groups have 𝑝𝑚

elements with 𝑚 ∈ℕ and 𝑝 a prime number. The only infinite groups in  are the Prüfer 𝑝-groups ℤ(𝑝∞) where 𝑝 is a prime number. 
There are different ways of defining these groups. Prüfer groups can be defined as the set of the 𝑝𝑚th complex roots of unity for 
all 𝑚 ∈ ℕ with the complex multiplication as the operation. It may also be defined as ℚ(𝑝)∕ℤ where ℚ(𝑝) is the group of all rational 
5
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Fig. 1. To ensure that 𝑨≫𝑘 𝑇 , (1) must hold as long as the point (𝑥𝑖, 𝑦𝑖) lies in the gray area of the corresponding plot for all 𝑖 ∈ {1,… , 𝑛}.

numbers whose denominators are powers of 𝑝. Therefore, all proper subgroups of ℤ(𝑝∞) are cyclic, of finite order and isomorphic to 
ℤ𝑝𝑚 for some 𝑚 ∈ ℕ. A detailed study of Prüfer groups and their properties can be found in [16].

Once we have established which groups are included in , we will carry out a systematic study depending on the properties of 
these groups, since the relations between 𝑨 and 𝑇 that characterize the preservation of 𝑇 -subgroups on behalf of 𝑨 will depend on 
the ambient group. To begin with, we prove in Example 4.1 that, in general, not every operator preserves 𝑇 -subgroups on products.

Example 4.1. Let 𝐺 be a group. Define the function 𝑨 ∶
⋃

𝑛∈ℕ[0, 1]𝑛 → [0, 1] so that its 𝑛-ary operators have the form:

𝐴(𝑥1,… , 𝑥𝑛) =

{
1 if 𝑥𝑖 = 1 for some 𝑖 ∈ {1,… , 𝑛},
0 otherwise .
6
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It is easy to prove that 𝑨 is an aggregation operator. Let us take now 𝑥1, … , 𝑥𝑛 ∈]0, 1[ and define the fuzzy sets 𝜇1, … , 𝜇𝑛 such that for 
each 𝑖 ∈ {1, … , 𝑛}:

𝜇𝑖(𝑧) =

{
1 if 𝑧 = 𝑒,

𝑥𝑖 if 𝑧 ≠ 𝑒.

Since the level sets of each of these fuzzy sets are subgroups of 𝐺, we have that 𝜇1, … , 𝜇𝑛 are 𝑇𝑀 -subgroups by Proposition 2.6 and 
therefore they are also 𝑇 -subgroups. Let us choose:

𝒂 = (𝑎1,… , 𝑎𝑛),𝒃 = (𝑏1,… , 𝑏𝑛) ∈𝐺𝑛

with 𝑎1, 𝑏2, … , 𝑏𝑛 ∈𝐺 ⧵ {𝑒} and 𝑏1 = 𝑎2 =⋯ = 𝑎𝑛 = 𝑒. Here, 𝑎𝑖𝑏𝑖 ≠ 𝑒 for all 𝑖 ∈ {1, … , 𝑛} and:

𝐴◦�̃�(𝒂𝒃) =𝐴(𝑥1,… , 𝑥𝑛) = 0 < 1 = 𝑇 (𝐴(𝑥1,1,… ,1),𝐴(1, 𝑥2,… , 𝑥𝑛))

= 𝑇 (𝐴◦�̃�(𝒂),𝐴◦�̃�(𝒃)).

Consequently, 𝑨 is an aggregation operator that does not preserve 𝑇 -subgroups on products.

In addition, the following example shows that domination is not a necessary condition in general for the preservation of 𝑇 -
subgroups when 𝐺 ∈ . Theorem 3.8 does not hold then when we employ some t-norms other than the minimum.

Example 4.2. Let 𝑨 = 𝑇𝑃 and 𝑇 = 𝑇𝑃∕2. In [3] we found that 𝑨 𝑇 . Nevertheless 𝑨 actually preserves 𝑇 -subgroups of 𝐺 =ℤ2. Given 
𝜇1, … , 𝜇𝑛 𝑇 -subgroups of 𝐺, it was verified that for all 𝒂, 𝒃 ∈𝐺𝑛:

𝑇𝑃 ◦�̃�(𝒂𝒃) =
𝑛∏

𝑖=1
𝜇𝑖(𝑎𝑖𝑏𝑖) ≥ 𝑇𝑃∕2

(
𝑛∏

𝑖=1
𝜇𝑖(𝑎𝑖),

𝑛∏
𝑖=1

𝜇𝑖(𝑏𝑖)

)
(2)

= 𝑇𝑃∕2(𝑇𝑃 ◦�̃�(𝒂), 𝑇𝑃 ◦�̃�(𝒃)).

Thus, domination is not a necessary condition for the preservation of 𝑇 -subgroups when 𝑇 ≠ 𝑇𝑀 although it is a sufficient condition.

In order to characterize the aggregation operators preserving T-subgroups on products when 𝐿𝑎𝑡(𝐺) is a chain, we will make use 
of type-𝑘 domination whenever full domination is not necessary. Depending on the order of the group of  under consideration, we 
will need to take a different value of 𝑘. We detail the particular case treated on each subsection:

4.1 Groups with 2 and 3 elements.
4.2 Cyclic groups with 4 and 5 elements.
4.3 Groups with prime order greater than 5.
4.4 Cyclic groups with order 𝑝𝑚 > 4, being 𝑝 a prime and 𝑚 an integer greater than or equal to 2.
4.5 Infinite Prüfer 𝑝-groups.

The following result establishes that any aggregation operator that preserves 𝑇 -subgroups on products must type-0 dominate 𝑇 .

Theorem 4.3. Let 𝐺 be a group, 𝑇 a t-norm and 𝑨 an aggregation operator such that 𝑨 preserves 𝑇 -subgroups of 𝐺 on products. Then 
𝑨≫0 𝑇 .

Proof. Fixing (𝑥1, … , 𝑥𝑛), (𝑦1, … , 𝑦𝑛) ∈ [0, 1]𝑛 such that max{𝑥𝑖, 𝑦𝑖} = 1 for all 𝑖 ∈ {1, … , 𝑛}, we can define 𝜇1, … , 𝜇𝑛 𝑇𝑀 -subgroups of 
𝐺 as follows:

𝜇𝑖(𝑧) =

{
1 if 𝑧 = 𝑒,

min{𝑥𝑖, 𝑦𝑖} if 𝑧 ≠ 𝑒
for each 𝑖 ∈ {1,… , 𝑛}.

They are in fact 𝑇𝑀 -subgroups due to Proposition 2.6. Let us take 𝒂 = (𝑎1, … , 𝑎𝑛), 𝒃 = (𝑏1, … , 𝑏𝑛) ∈𝐺𝑛 such that for each 𝑖 ∈ {1, … , 𝑛}:

- 𝑎𝑖 ≠ 𝑒, 𝑏𝑖 = 𝑒 if min{𝑥𝑖, 𝑦𝑖} ∈ {𝑥𝑖, 1},
- 𝑎𝑖 = 𝑒, 𝑏𝑖 ≠ 𝑒 if min{𝑥𝑖, 𝑦𝑖} = 𝑦𝑖 < 1.

In all cases we have that 𝑥𝑖 = 𝜇𝑖(𝑎𝑖) and 𝑦𝑖 = 𝜇𝑖(𝑏𝑖). Moreover 𝑎𝑖𝑏𝑖 ≠ 𝑒 and max{𝑥𝑖, 𝑦𝑖} = 1 for all 𝑖 ∈ {1, … , 𝑛}, so 𝜇𝑖(𝑎𝑖𝑏𝑖) =min{𝑥𝑖, 𝑦𝑖} =
𝑇 (𝑥𝑖, 𝑦𝑖).

Since we have assumed that 𝑨 preserves 𝑇 -subgroups of 𝐺 on products, then:

𝐴(𝑇 (𝑥1, 𝑦1),… ,𝑇 (𝑥𝑛, 𝑦𝑛)) =𝐴◦�̃�(𝑎1𝑏1,… , 𝑎𝑛𝑏𝑛) =𝐴◦�̃�(𝒂𝒃)

≥ 𝑇 (𝐴◦�̃�(𝒂),𝐴◦�̃�(𝒃))
7
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= 𝑇 (𝐴(𝜇1(𝑎1),… , 𝜇𝑛(𝑎𝑛)),𝐴(𝜇1(𝑏1),… , 𝜇𝑛(𝑏𝑛)))

= 𝑇 (𝐴(𝑥1,… , 𝑥𝑛),𝐴(𝑦1,… , 𝑦𝑛)).

Therefore, 𝑨≫0 𝑇 . □

Remark 4.4. This theorem together with Theorem 3.5 states that, for any group, any property that characterizes the preservation of 
𝑇 -subgroups on products under aggregation must be weaker than domination but stronger than type-0 domination. We will see that 
such property is type-𝑘 domination.

4.1. Groups with 2 and 3 elements

We will show now that, if the cardinal of the group 𝐺 is 2 or 3, the converse of Theorem 4.3 is also true. However, this situation 
does not hold true in general for other groups as we will see in the next section.

Theorem 4.5. Let 𝑇 be a t-norm, 𝑨 an aggregation operator and 𝐺 a group with 2 or 3 elements. The following statements are equivalent:

(i) 𝑨 preserves 𝑇 -subgroups of 𝐺 on products.

(ii) 𝑨≫0 𝑇 .

Proof. (𝑖) ⇒ (𝑖𝑖) It is a direct consequence of Theorem 4.3.
(𝑖𝑖) ⇒ (𝑖) Let us suppose that 𝑨≫0 𝑇 . Given 𝑛 ∈ℕ, 𝜇1, … , 𝜇𝑛 𝑇 -subgroups of 𝐺 and 𝒂, 𝒃∈𝐺𝑛, let us check that:

𝐴◦�̃�(𝒂𝒃) ≥ 𝑇 (𝐴◦�̃�(𝒂),𝐴◦�̃�(𝒃)).

Since |𝐺| ∈ {2, 3} and 𝐺1 and 𝐺2 must be satisfied, all 𝑇 -subgroups must be in the form:

𝜇𝑖(𝑧) =

{
1 if 𝑧 = 𝑒,

𝛼𝑖 if 𝑧 ≠ 𝑒

with 𝛼𝑖 ∈ [0, 1] for each 𝑖 ∈ {1, … , 𝑛}. We will choose (𝑥1, … , 𝑥𝑛), (𝑦1, … , 𝑦𝑛) ∈ [0, 1]𝑛 such that for every 𝑖 ∈ {1, … , 𝑛}:

𝑥𝑖 ≥ 𝜇𝑖(𝑎𝑖), 𝑦𝑖 ≥ 𝜇𝑖(𝑏𝑖), 𝜇𝑖(𝑎𝑖𝑏𝑖) ≥ 𝑇 (𝑥𝑖, 𝑦𝑖) and max{𝑥𝑖, 𝑦𝑖} = 1. (3)

With this constrains, the points (𝑥1, … , 𝑥𝑛), (𝑦1, … , 𝑦𝑛) satisfy inequality (1) in Definition 3.14. As we supposed that 𝑨≫0 𝑇 :

𝐴◦�̃�(𝒂𝒃) =𝐴(𝜇1(𝑎1𝑏1),… , 𝜇1(𝑎𝑛𝑏𝑛)) ≥𝐴(𝑇 (𝑥1, 𝑦1),… , 𝑇 (𝑥𝑛, 𝑦𝑛)) (4)

≥ 𝑇 (𝐴(𝑥1,… , 𝑥𝑛),𝐴(𝑦1,… , 𝑦𝑛))

≥ 𝑇 (𝐴(𝜇1(𝑎1),… , 𝜇𝑛(𝑎𝑛)),𝐴(𝜇1(𝑏1),… , 𝜇𝑛(𝑏𝑛)))

= 𝑇 (𝐴◦�̃�(𝒂),𝐴◦�̃�(𝒃)).

In order to choose each pair (𝑥𝑖, 𝑦𝑖), we will proceed as follows. If 𝜇𝑖(𝑎𝑖𝑏𝑖) = 1, it suffices to fix (𝑥𝑖, 𝑦𝑖) = (1, 1). So let us suppose 
that 𝜇𝑖(𝑎𝑖𝑏𝑖) ≠ 1. In that case, and given that 𝜇𝑖 is 𝑇𝑀 -subgroup, we have that 1 > 𝛼𝑖 = 𝜇𝑖(𝑎𝑖𝑏𝑖) = min{𝜇𝑖(𝑎𝑖), 𝜇𝑖(𝑏𝑖)}. There are two 
possibilities here:

- If 𝜇𝑖(𝑎𝑖) =min{𝜇𝑖(𝑎𝑖), 𝜇𝑖(𝑏𝑖)}, we will take 𝑥𝑖 = 𝜇𝑖(𝑎𝑖) = 𝜇𝑖(𝑎𝑖𝑏𝑖) and 𝑦𝑖 = 1 ≥ 𝜇𝑖(𝑏𝑖).
- If 𝜇𝑖(𝑏𝑖) =min{𝜇𝑖(𝑎𝑖), 𝜇𝑖(𝑏𝑖)}, we will take 𝑥𝑖 = 1 ≥ 𝜇𝑖(𝑎𝑖) and 𝑦𝑖 = 𝜇𝑖(𝑏𝑖) = 𝜇𝑖(𝑎𝑖𝑏𝑖).

Hence, (3) and (4) holds and 𝑨 preserves 𝑇 -subgroups. □

Under the conditions of the above theorem we obtain the next corollary as a consequence of Proposition 3.2.

Corollary 4.6. Let 𝑇 be a t-norm, 𝑨 an aggregation operator, and 𝐺 a group with 2 or 3 elements. If 𝑨≫0 𝑇 then 𝑨 preserves 𝑇 -subgroups 
on sets.

Remark 4.7. Note that, when 𝑇 = 𝑇𝑀 Theorem 3.8 states that 𝑨 ≫ 𝑇𝑀 if and only if 𝑨 preserves 𝑇𝑀 -subgroups on products. 
If |𝐺| ∈ {2, 3}, Theorem 4.5 establishes that 𝑨 preserves 𝑇 -subgroups if and only if 𝑨 ≫0 𝑇 . Thus, we can draw the scheme of 
implications of the Fig. 2 and claim that 𝑨≫ 𝑇𝑀 if and only if 𝑨≫0 𝑇𝑀 .

Since both properties do not depend on the chosen ambient group, the latter equivalence can be proved directly by means of the 
following characterization of dominance over 𝑇𝑀 provided by Saminger, Mesiar and Bodenhofer in [27]:
8
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𝑨≫ 𝑇 𝑨 preserves 𝑇 -subgroups on products 𝑨≫0 𝑇

if 𝑇 = 𝑇𝑀 if |𝐺| ∈ {2,3}

Fig. 2. Relation between domination, type-0 domination and preservation of 𝑇 -subgroups on products.

𝑨≫ 𝑇𝑀 if and only if

𝐴(𝑥1,… , 𝑥𝑛) = min{𝐴(𝑥1,1,… ,1),… ,𝐴(1,… ,1, 𝑥𝑛)}

for all (𝑥1, … , 𝑥𝑛), (𝑦1, … , 𝑦𝑛) ∈ [0, 1]𝑛.
Nevertheless, type-0 domination and usual domination are not equivalent in general. Example 4.2 shows that 𝑇𝑃  𝑇𝑃∕2 but 𝑇𝑃

preserves 𝑇𝑃∕2-subgroups on products. By Theorem 4.5 we have that 𝑇𝑃 ≫0 𝑇𝑃∕2 so this example highlights the differences between 
both forms of domination, ≫0 and ≫.

4.2. Cyclic groups with 4 and 5 elements

Let us illustrate with an example that type-0 domination is not a sufficient condition for the preservation of 𝑇 -subgroups on 
products if the ambient group is cyclic of order greater than 4.

Example 4.8. In Remark 4.7 we showed that 𝑇𝑃 ≫0 𝑇𝑃∕2. Let us see that, if 𝐺 = ⟨𝑔⟩ with |𝐺| = 𝑟 ≥ 4, we can construct 𝑇𝑃∕2-subgroups 
such that their aggregation under 𝑇𝑃 is not a 𝑇𝑃∕2-subgroup. Let 𝑛 be a natural number greater than 2 and the 𝑇 -subgroups:

𝜇𝑖(𝑧) =
⎧⎪⎨⎪⎩
1 if 𝑧 = 𝑒,
1
2 if 𝑧 ∈ {𝑔, 𝑔𝑟−1},
1
7 otherwise

for each 𝑖 ∈ {1, … , 𝑛}. It is easy to prove that these are indeed 𝑇 -subgroups of any of the aforementioned groups. In addition, if we 
fix 𝒂, 𝒃∈𝐺𝑛 so that 𝑎𝑖 = 𝑏𝑖 = 𝑔 for all 𝑖 ∈ {1, … , 𝑛}, we obtain that 𝜇𝑖(𝑎𝑖) = 𝜇(𝑏𝑖) =

1
2 and 𝜇(𝑎𝑖𝑏𝑖) = 𝜇(𝑔2) = 1

7 . Thus:

𝑇𝑃 ◦�̃�(𝒂𝒃) =
1
7𝑛

<
1

22𝑛+1
= 𝑇𝑃∕2

( 1
2𝑛

,
1
2𝑛

)
= 𝑇𝑃∕2(𝑇𝑃 ◦�̃�(𝒂), 𝑇𝑃 ◦�̃�(𝒃)),

concluding that there is no preservation of 𝑇𝑃∕2-subgroups.

Before looking for the relationship between 𝑨 and 𝑇 to guarantee the preservation of 𝑇 -subgroups in these new cases, we need 
to introduce some results that provide information on the structure of 𝑇 -subgroups in cyclic groups.

Lemma 4.9. Let 𝜇 be a 𝑇 -subgroup of a cyclic group 𝐺 with order 𝑟. Then we have that either 𝜇(𝑎) = 1 for all 𝑎 ∈𝐺 or 𝜇(𝑏) ≠ 1 for every 𝑏
generator of the group.

Proof. Given 𝑏 ∈𝐺 such that 𝐺 = ⟨𝑏⟩. If 𝜇(𝑏) = 1 we can take 𝑎 ∈𝐺 ⧵ {𝑒} so that there exists 𝑘 ∈ {1, … , 𝑟 − 1} with 𝑎 = 𝑏𝑘. Hence:

1 ≥ 𝜇(𝑎) = 𝜇(𝑏𝑘) ≥ 𝜇(𝑏)(𝑘)
𝑇

= 1(𝑘)
𝑇

= 1

and then 𝜇(𝑎) = 1. Thus, it follows that if 𝜇(𝑏) ≠ 1 for some generator 𝑏, then 𝜇 does not take the value 1 for any other generator. □

Corollary 4.10. Let 𝜇 be a 𝑇 -subgroup of a group 𝐺 with a prime number 𝑝 of elements. Then we have that either 𝜇(𝑎) = 1 for all 𝑎 ∈𝐺 or 
𝜇(𝑎) ≠ 1 for all 𝑎 ∈𝐺 ⧵ {𝑒}.

With the following theorem, we get to characterize the 𝑇 -subgroups of a cyclic group.

Theorem 4.11. Let 𝜇 ∈ [0, 1]𝐺 with 𝐺 = ⟨𝑔⟩ a cyclic group with order 𝑟 ∈ℕ. The following are equivalent:

(i) 𝜇 is a 𝑇 -subgroup of 𝐺.

(ii) 𝜇 must be of the form:

𝜇(𝑧) =

⎧⎪⎪⎪⎨⎪⎪⎪

1 if 𝑧 = 𝑒,

𝛼1 if 𝑧 ∈ {𝑔, 𝑔−1},
⋮ ⋮

𝛼[ 𝑟

2

] if 𝑧 ∈ {𝑔
[

𝑟

2

]
, 𝑔

−
[

𝑟

2

]
},

(5)
⎩
9
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with 𝛼1, … , 𝛼[ 𝑟

2

] ∈ [0, 1] and 𝛼𝑢 ≥ 𝑇 (𝛼𝑗 , 𝛼𝑘) for all:

(𝑢, 𝑗, 𝑘) ∈𝐷𝑟 = {(𝑥, 𝑦, 𝑧) ∈
{
1,… ,

[
𝑟

2

]}3 | 𝑥 ∈ {𝑦+ 𝑧, 𝑧− 𝑦, 𝑟− 𝑦− 𝑧}}.

Proof. (𝑖) ⇒ (𝑖𝑖) Let us suppose that 𝜇 is a 𝑇 -subgroup of 𝐺 = ⟨𝑔⟩ so that the properties 𝐺1 −𝐺3 are satisfied. It is therefore necessary 
that 𝜇(𝑒) = 1. In addition, for each 𝑢 ∈

{
1,… ,

[
𝑟

2

]}
we can define 𝛼𝑢 ∶= 𝜇(𝑔𝑢). Since 𝜇 is 𝑇 -subgroup and (𝑔𝑢)−1 = 𝑔−𝑢, we can describe 

𝜇 as in (5).
It only remains to prove that 𝛼𝑢 ≥ 𝑇 (𝛼𝑗 , 𝛼𝑘) for all

(𝑢, 𝑗, 𝑘) ∈ {(𝑥, 𝑦, 𝑧) ∈
{
1,… ,

[
𝑟

2

]}3 | 𝑥 ∈ {𝑦+ 𝑧, 𝑧− 𝑦, 𝑟− 𝑦− 𝑧}}.

We will verify the inequality for each possible value of 𝑢, always keeping in mind that 1 ≤ 𝑢 ≤
[

𝑟

2

]
and that 𝜇 is 𝑇 -subgroup:

1. If 𝑢 = 𝑗 + 𝑘:

𝛼𝑢 = 𝜇(𝑔𝑢) = 𝜇(𝑔𝑗+𝑘) = 𝜇(𝑔𝑗𝑔𝑘) ≥ 𝑇 (𝜇(𝑔𝑗 ), 𝜇(𝑔𝑘)) = 𝑇 (𝛼𝑗 , 𝛼𝑘).

2. If 𝑢 = 𝑘 − 𝑗:

𝛼𝑢 = 𝜇(𝑔𝑢) = 𝜇(𝑔𝑘−𝑗 ) ≥ 𝑇 (𝜇(𝑔𝑘), 𝜇(𝑔−𝑗 )) = 𝑇 (𝛼𝑗 , 𝛼𝑘).

3. If 𝑢 = 𝑟 − 𝑗 − 𝑘:

𝛼𝑢 = 𝜇(𝑔𝑢) = 𝜇(𝑔𝑟−𝑗−𝑘) = 𝜇(𝑔−𝑗−𝑘) ≥ 𝑇 (𝜇(𝑔−𝑗 ), 𝜇(𝑔−𝑘)) = 𝑇 (𝛼𝑗 , 𝛼𝑘).

Therefore 𝜇 must be in the form described in (ii).
(𝑖𝑖) ⇒ (𝑖) It suffices to show that 𝜇 defined as in (𝑖𝑖) fulfills the 𝑇 -subgroup properties. 𝐺1 is trivially satisfied. To derive 𝐺2 let us 

take 𝑎 ∈𝐺 ⧵ {𝑒}. We can write 𝑎 = 𝑔𝑢0 with 𝑢0 ∈ {1, … , 𝑟 − 1}.

- If 𝑢0 ∈
{
1,… ,

[
𝑟

2

]}
, then 𝜇(𝑎) = 𝜇(𝑔𝑢0 ) = 𝛼𝑢0

= 𝜇(𝑔−𝑢0 ) = 𝜇(𝑎−1).

- If 𝑢0 ∈
{[

𝑟

2

]
+ 1,… , 𝑟− 1

}
, then 𝑟 − 𝑢0 ∈

{
1,… ,

[
𝑟

2

]}
and:

𝜇(𝑎) = 𝜇(𝑔𝑢0 ) = 𝜇(𝑔𝑢0−𝑟) = 𝜇(𝑔−(𝑟−𝑢0)) = 𝛼𝑟−𝑢0
= 𝜇(𝑔

𝑟−𝑢0 ) = 𝜇(𝑔−𝑢0 ) = 𝜇(𝑎−1).

Thus, 𝜇 satisfies 𝐺2.
Finally, let us check 𝐺3. Let 𝑎, 𝑏 ∈𝐺 and suppose that 𝑎, 𝑏, 𝑎𝑏 ∉ {𝑒} (otherwise 𝐺3 is directly satisfied). Since:

𝐺 ⧵ {𝑒} =
{
𝑔1,… , 𝑔𝑟−1} =

⋃
𝑖∈
{
1,…,

[
𝑟

2

]}{𝑔𝑖, 𝑔−𝑖
}
,

it is clear that there are 𝑢, 𝑗, 𝑘 ∈
{
1,… ,

[
𝑟

2

]}
such that 𝑎 ∈

{
𝑔𝑗 , 𝑔−𝑗

}
, 𝑏 ∈

{
𝑔𝑘, 𝑔−𝑘

}
and 𝑎𝑏 ∈ {𝑔𝑢, 𝑔−𝑢} ⊆

{
𝑔𝑗+𝑘, 𝑔𝑘−𝑗 , 𝑔𝑗−𝑘, 𝑔−𝑗−𝑘

}
. 

Furthermore, 𝑔𝑟−𝑗−𝑘 = 𝑔−𝑗−𝑘 = (𝑔𝑗+𝑘)−1 and 𝑔𝑗−𝑘 = (𝑔𝑘−𝑗 )−1. Two situations are possible:

1. 𝛼𝑢 = 𝜇(𝑎𝑏) = 𝜇(𝑔𝑗+𝑘) = 𝜇(𝑔𝑟−𝑗−𝑘).
2. 𝛼𝑢 = 𝜇(𝑎𝑏) = 𝜇(𝑔𝑘−𝑗 ) = 𝜇(𝑔𝑗−𝑘).

Note that, given 𝑗, 𝑘 ∈
{
1,… ,

[
𝑟

2

]}
, either 𝑟 − 𝑗 − 𝑘 ∈

{
1,… ,

[
𝑟

2

]}
or 𝑗 + 𝑘 ∈

{
1,… ,

[
𝑟

2

]}
. The same applies to 𝑘 − 𝑗 and 𝑗 − 𝑘, one 

of them is automatically included in the set 
{
1,… ,

[
𝑟

2

]}
. Then, 𝜇(𝑎𝑏) = 𝛼𝑢 ∈

{
𝛼𝑗+𝑘, 𝛼𝑘−𝑗 , 𝛼𝑗−𝑘, 𝛼𝑟−𝑗−𝑘

}
and this means that 𝜇(𝑎𝑏) = 𝛼𝑢0

with 𝑢0 ∈ {𝑗 + 𝑘, 𝑘 − 𝑗, 𝑗 − 𝑘, 𝑟 − 𝑗 − 𝑘}. It is clear that either (𝑢0, 𝑗, 𝑘) ∈𝐷𝑟 or (𝑢0, 𝑘, 𝑗) ∈𝐷𝑟. Thus, due to the commutativity of 𝑇 , we 
have:

𝜇(𝑎𝑏) = 𝛼𝑢0
≥ 𝑇 (𝛼𝑗 , 𝛼𝑘) = 𝑇 (𝜇(𝑎), 𝜇(𝑏)).

This shows that 𝐺3 is satisfied and that 𝜇 is 𝑇 -subgroup of 𝐺. □

Remark 4.12. In the previous theorem, the use of the integer part of a real number 𝑎 ∈ ℝ avoids duplicating the proof, since it 
includes the cases where the order of the group is even or odd. In this respect, note also that if the order 𝑟 of the group is even and 𝑔
is a generator of the group:

𝑔

[
𝑟

2

]
= 𝑔

𝑟

2 = 𝑔
𝑟− 𝑟

2 = 𝑔
− 𝑟

2 = 𝑔
−
[

𝑟

2

]
.

10
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In the following result we obtain a characterization of the preservation of 𝑇 -subgroups by aggregation using type-1 domination 
for cyclic groups of order 4 or 5.

Theorem 4.13. Let 𝐺 = ⟨𝑔⟩ be a cyclic group with 4 or 5 elements, 𝑨 an aggregation operator and 𝑇 a t-norm. The following propositions 
are equivalent:

(i) 𝑨 preserves 𝑇 -subgroups of 𝐺 on products.

(ii) 𝑨≫1 𝑇

Proof. (𝑖) ⇒ (𝑖𝑖) Let us consider (𝑥1, … , 𝑥𝑛), (𝑦1, … , 𝑦𝑛) ∈ [0, 1]𝑛 such that, for each 𝑖 ∈ {1, … , 𝑛} one of these conditions is satisfied:

- max{𝑥𝑖, 𝑦𝑖} = 1 or
- 𝑥𝑖 = 𝑦𝑖.

We will show that inequality (1) holds.
To prove this, we will choose 𝑛 𝑇 -subgroups 𝜇1, … , 𝜇𝑛 and 𝒂, 𝒃∈𝐺𝑛 so that for each 𝑖 ∈ {1, … , 𝑛}:

𝑥𝑖 = 𝜇𝑖(𝑎𝑖), 𝑦𝑖 = 𝜇𝑖(𝑏𝑖) and 𝜇𝑖(𝑎𝑖𝑏𝑖) = 𝑇 (𝑥𝑖, 𝑦𝑖).

Hence, as 𝑨 preserves 𝑇 -subgroups of 𝐺 on products:

𝐴(𝑇 (𝑥1, 𝑦1),… , 𝑇 (𝑥𝑛, 𝑦𝑛)) =𝐴◦�̃�(𝒂𝒃) ≥ 𝑇 (𝐴◦�̃�(𝒂),𝐴◦�̃�(𝒃)) (6)

= 𝑇 (𝐴(𝑥1,… , 𝑥𝑛),𝐴(𝑦1,… , 𝑦𝑛)),

concluding that 𝑨≫1 𝑇 .
For this choice, we will consider two situations for each 𝑖 ∈ {1, … , 𝑛}. Whenever max{𝑥𝑖, 𝑦𝑖} = 1 we will define the 𝑇 -subgroups:

𝜇𝑖(𝑧) =

{
1 if 𝑧 = 𝑒,

min{𝑥𝑖, 𝑦𝑖} if 𝑧 ≠ 𝑒.

In addition, we will set 𝑎𝑖 ≠ 𝑒 and 𝑏𝑖 = 𝑒 if min{𝑥𝑖, 𝑦𝑖} ∈ {𝑥𝑖, 1} and 𝑎𝑖 = 𝑒 y 𝑏𝑖 ≠ 𝑒 if min{𝑥𝑖, 𝑦𝑖} = 𝑦𝑖 < 1. In this case 𝑥𝑖 = 𝜇𝑖(𝑎𝑖), 𝑦𝑖 = 𝜇𝑖(𝑏𝑖)
and 𝜇𝑖(𝑎𝑖𝑏𝑖) =min{𝑥𝑖, 𝑦𝑖} = 𝑇 (𝑥𝑖, 𝑦𝑖).

Conversely, if 𝑥𝑖 = 𝑦𝑖, the 𝑇 -subgroup should be defined as:

𝜇𝑖(𝑧) =
⎧⎪⎨⎪⎩
1 if 𝑧 = 𝑒,

𝑥𝑖 if 𝑧 ∈ {𝑔, 𝑔−1},
𝑇 (𝑥𝑖, 𝑥𝑖) if 𝑧 ∈ {𝑔2, 𝑔−2}.

Proving that 𝜇𝑖 is indeed 𝑇 -subgroup of 𝐺 is straightforward because of Theorem 4.11.
Here, we will take 𝑎𝑖 = 𝑏𝑖 = 𝑔 with the aim that 𝜇𝑖(𝑎𝑖) = 𝜇𝑖(𝑏𝑖) = 𝑥𝑖 = 𝑦𝑖 and 𝜇𝑖(𝑎𝑖𝑏𝑖) = 𝑇 (𝑥𝑖, 𝑥𝑖) = 𝑇 (𝑥𝑖, 𝑦𝑖). With this choice, the 

conditions are in place for (6) to hold and therefore 𝑨≫1 𝑇 .
(𝑖𝑖) ⇒ (𝑖) Let 𝑛 ∈ℕ and 𝜇1, … , 𝜇𝑛 arbitrary 𝑇 -subgroups of 𝐺. From Theorem 4.11 we have that:

𝜇𝑖(𝑧) =
⎧⎪⎨⎪⎩
1 if 𝑧 = 𝑒,

𝛼𝑖 if 𝑧 ∈ {𝑔, 𝑔−1},
𝛽𝑖 if 𝑧 ∈ {𝑔2, 𝑔−2},

for some 𝛼𝑖, 𝛽𝑖 ∈ [0, 1] for each 𝑖 ∈ {1, … , 𝑛}. Now, given 𝒂, 𝒃 ∈ 𝐺𝑛 we will look for (𝑥1, … , 𝑥𝑛), (𝑦1, … , 𝑦𝑛) ∈ [0, 1] such that either 
max{𝑥𝑖, 𝑦𝑖} = 1 or 𝑥𝑖 = 𝑦𝑖. In addition, we choose:

𝑥𝑖 ≥ 𝜇𝑖(𝑎𝑖), 𝑦𝑖 ≥ 𝜇𝑖(𝑏𝑖) and 𝜇𝑖(𝑎𝑖𝑏𝑖) ≥ 𝑇 (𝑥𝑖, 𝑦𝑖).

Since (𝑥1, … , 𝑥𝑛) and (𝑦1, … , 𝑦𝑛) fulfill the conditions of Definition 3.14, we have that:

𝐴◦�̃�(𝒂𝒃) ≥𝐴(𝑇 (𝑥1, 𝑦1),… , 𝑇 (𝑥𝑛, 𝑦𝑛))

≥ 𝑇 (𝐴(𝑥1,… , 𝑥𝑛),𝐴(𝑦1,… , 𝑦𝑛)) (7)

≥ 𝑇 (𝐴◦�̃�(𝒂),𝐴◦�̃�(𝒃)).

To make such a selection, let us consider three cases:

(a) If 𝜇𝑖(𝑎𝑖𝑏𝑖) ≥min{𝜇𝑖(𝑎𝑖), 𝜇𝑖(𝑏𝑖)} = 𝜇𝑖(𝑎𝑖) we take:

𝑥𝑖 = 𝜇𝑖(𝑎𝑖𝑏𝑖) ≥ 𝜇𝑖(𝑎𝑖) and 𝑦𝑖 = 1 ≥ 𝜇𝑖(𝑏𝑖).
11
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(b) If 𝜇𝑖(𝑎𝑖𝑏𝑖) ≥min{𝜇𝑖(𝑎𝑖), 𝜇𝑖(𝑏𝑖)} = 𝜇𝑖(𝑏𝑖) the choice is:

𝑥𝑖 = 1 ≥ 𝜇𝑖(𝑎𝑖) and 𝑦𝑖 = 𝜇𝑖(𝑎𝑖𝑏𝑖) ≥ 𝜇𝑖(𝑏𝑖).

(c) Finally, we see that if 1 >min{𝜇𝑖(𝑎𝑖), 𝜇𝑖(𝑏𝑖)} > 𝜇𝑖(𝑎𝑖𝑏𝑖) ≥ 𝑇 (𝜇𝑖(𝑎𝑖), 𝜇𝑖(𝑏𝑖)) then 𝜇𝑖(𝑎𝑖) = 𝜇𝑖(𝑏𝑖). Suppose otherwise that 𝜇𝑖(𝑎𝑖) ≠ 𝜇𝑖(𝑏𝑖). 
Indeed, if this were the case then:

min{𝛼𝑖, 𝛽𝑖} = min{𝜇𝑖(𝑎𝑖), 𝜇𝑖(𝑏𝑖)} > 𝜇𝑖(𝑎𝑖𝑏𝑖),

but 𝜇𝑖(𝑎𝑖𝑏𝑖) ∈ {𝛼𝑖, 𝛽𝑖} so this leads to a contradiction. Consequently, we will set the values 𝑥𝑖 = 𝑦𝑖 = 𝜇𝑖(𝑎𝑖) = 𝜇𝑖(𝑏𝑖).

Now we can easily check that, in any case, 𝑥𝑖 and 𝑦𝑖 satisfy the conditions that we have initially demanded. Therefore, inequality (7)
holds and 𝑨 preserves 𝑇 subgroups of 𝐺 on products. □

Corollary 4.14. Let 𝐺 = ⟨𝑔⟩ be a cyclic group with 4 or 5 elements, 𝑨 an aggregation operator and 𝑇 a t-norm. If 𝑨≫1 𝑇 then 𝑨 preserves 
𝑇 -subgroups on sets.

Remark 4.15. In Example 4.8 we showed that 𝑇𝑃 does not preserve 𝑇𝑃∕2-subgroups of cyclic groups with more than 3 elements on 
products. In particular, if the order of 𝐺 is 4 or 5 by Theorem 4.13, 𝑇𝑃 1 𝑇𝑃∕2. Remark 4.8 states that 𝑇𝑃 ≫0 𝑇𝑃∕2 so this proves that 
≫0 and ≫1 are different properties.

4.3. Groups with prime order greater than 5

In this section we will study the necessary and sufficient conditions for an aggregation 𝑨 to preserve 𝑇 -subgroups of groups with 
a prime number of elements greater than or equal to 7. We will see that type-𝑘 domination is again key in this case. But first it is 
necessary to state a lemma that provides some specific 𝑇 -subgroups defined over cyclic groups. Moreover, it clarifies and shortens 
the proof of Theorem 4.17.

Lemma 4.16. Let 𝑇 be a t-norm and 𝐺 = ⟨𝑔⟩ a group such that |𝐺| = 𝑟 > 5. Given 𝑥, 𝑦 ∈ [0, 1] and 𝑣 ∈ {2, … , 
[

𝑟

2

]
− 1} with 𝑥 ≥ 𝑥

(𝑣−1)
𝑇

≥ 𝑦 ≥

𝑥
(𝑣)
𝑇

≥ 𝑥
(
[

𝑟

2

]
−1)

𝑇
. Then, the fuzzy set:

𝜇(𝑧) =

⎧⎪⎪⎨⎪⎪⎩

1 if 𝑧 = 𝑒,

𝑥
(𝑢)
𝑇

if 𝑧 ∈ {𝑔𝑢, 𝑔𝑟−𝑢} with 1 ≤ 𝑢 < 𝑣,

𝑦 if 𝑧 ∈ {𝑔𝑢, 𝑔𝑟−𝑢} with 𝑢 = 𝑣,

𝛼𝑢 if 𝑧 ∈ {𝑔𝑢, 𝑔𝑟−𝑢} with 𝑣+ 1 ≤ 𝑢 ≤

[
𝑟

2

] (8)

where in the last case 𝛼𝑢 can be any number in the interval [𝑇 (𝑥, 𝑦), 𝑦], is a 𝑇 -subgroup.

Proof. Given 𝛼𝑢 ∶= 𝜇(𝑔𝑢) for all 𝑢 ∈ {1, … , 
[

𝑟

2

]
}, by Theorem 4.11 it is enough to check that 𝛼𝑢 ≥ 𝑇 (𝛼𝑗 , 𝛼𝑘) for all:

(𝑢, 𝑗, 𝑘) ∈𝐷𝑟 = {(𝑥, 𝑦, 𝑧) ∈
{
1,… ,

[
𝑟

2

]}3 | 𝑥 ∈ {𝑦+ 𝑧, 𝑧− 𝑦, 𝑟− 𝑦− 𝑧}}.

First of all, if 𝑥 = 1, then 𝛼𝑢 = 1 for all 𝑢 ∈
{
1,… ,

[
𝑟

2

]}
since:

1 = 𝑥
(𝑢)
𝑇

= 𝑥 ≥ 𝑦 ≥ 𝑥
(
[

𝑟

2

]
−1)

𝑇
= 1.

Therefore, 𝜇(𝑧) = 1 for all 𝑧 ∈𝐺 and 𝜇 is a trivial 𝑇 -subgroup.

Let us assume that 1 > 𝑥 ≥ 𝑥
(𝑢)
𝑇

≥ 𝑥
(
[

𝑟

2

]
−1)

𝑇
. We also have that 1 > 𝑥 ≥ 𝑦, so 𝛼𝑢 ≠ 1 for all 𝑢 ∈

{
1,… ,

[
𝑟

2

]}
. If 𝛼𝑢 ≥ min{𝛼𝑗 , 𝛼𝑘}, the 

statement 𝛼𝑢 ≥ 𝑇 (𝛼𝑗 , 𝛼𝑘) is straightforward. We will therefore check that when min{𝛼𝑗 , 𝛼𝑘} > 𝛼𝑢 we also have 𝛼𝑢 ≥ 𝑇 (𝛼𝑗 , 𝛼𝑘). Note that 
𝑢 ≤ 𝑗 + 𝑘 whenever 𝑢, 𝑗, 𝑘 ∈

{
1,… ,

[
𝑟

2

]}
with 𝑢 ∈ {𝑘+ 𝑗, 𝑘− 𝑗, 𝑟− 𝑘− 𝑗}:

- If 𝑢 = 𝑗 + 𝑘 the inequality is trivially satisfied.
- If 𝑢 = 𝑘 − 𝑗 then 𝑢 ≤ 𝑘 ≤ 𝑘 + 𝑗.

- If 𝑢 = 𝑟 − 𝑗 − 𝑘, by hypothesis 𝑢 ≤
[

𝑟

2

]
. On the one hand, for an odd 𝑟, 𝑢 ≤ 𝑟−1

2 and 𝑢 < 𝑢 + 1 ≤ 𝑟 − 𝑢 = 𝑘 + 𝑗. On the other hand, if 𝑟
is even, then 𝑢 ≤ 𝑟

2 and 𝑢 ≤ 𝑟 − 𝑢 = 𝑘 + 𝑗.

Using Lemmas 3.12 and 3.13 we will consider three possible cases:
12
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1. If 1 ≤ 𝑢 < 𝑣, then 𝛼𝑢 = 𝑥
(𝑢)
𝑇

. Since:

1 >min{𝛼𝑗 , 𝛼𝑘} > 𝛼𝑢 = 𝑥
(𝑢)
𝑇

≥ 𝑥
(𝑣−1)
𝑇

≥ 𝑦,

therefore 𝛼𝑗 = 𝑥
(𝑗)
𝑇

and 𝛼𝑘 = 𝑥
(𝑘)
𝑇

. Taking into account that 𝑢 ≤ 𝑗 + 𝑘:

𝛼𝑢 = 𝑥
(𝑢)
𝑇

≥ 𝑥
(𝑗+𝑘)
𝑇

= 𝑇 (𝑥(𝑗)
𝑇

, 𝑥
(𝑘)
𝑇
) = 𝑇 (𝛼𝑗 , 𝛼𝑘).

2. If 𝑢 = 𝑣, we have that 𝛼𝑢 = 𝑦. As before, 𝛼𝑗 = 𝑥
(𝑗)
𝑇

and 𝛼𝑘 = 𝑥
(𝑘)
𝑇

so we have:

𝛼𝑢 = 𝑦 ≥ 𝑥
(𝑣)
𝑇

= 𝑥
(𝑢)
𝑇

≥ 𝑥
(𝑗+𝑘)
𝑇

= 𝑇 (𝛼𝑗 , 𝛼𝑘).

3. If 𝑣 + 1 ≤ 𝑢 ≤
[

𝑟

2

]
, then min{𝛼𝑗 , 𝛼𝑘} > 𝛼𝑢 ∈ [𝑦, 𝑇 (𝑥, 𝑦)]. Here again we must distinguish 3 cases:

(a) If 𝛼𝑗 ≤ 𝑦, since 𝛼𝑘 ≠ 1, then 𝑥 ≥ 𝛼𝑘 and:

𝛼𝑢 ≥ 𝑇 (𝑥, 𝑦) ≥ 𝑇 (𝛼𝑗 , 𝛼𝑘).

(b) If 𝛼𝑘 ≤ 𝑦, the result is analogous to point (a).
(c) If 𝛼𝑗 = 𝑥

(𝑗)
𝑇

and 𝛼𝑘 = 𝑥
(𝑘)
𝑇

. Since 𝑦 ≥ 𝑥
(𝑣)
𝑇

:

𝛼𝑢 ≥ 𝑇 (𝑥, 𝑦) ≥ 𝑥
(𝑣+1)
𝑇

≥ 𝑥
(𝑢)
𝑇

≥ 𝑥
(𝑗+𝑘)
𝑇

= 𝑇 (𝛼𝑗 , 𝛼𝑘).

All the previous discussion shows that 𝛼𝑢 ≥ 𝑇 (𝛼𝑗 , 𝛼𝑘) for all (𝑢, 𝑗, 𝑘) ∈𝐷𝑟. Applying Theorem 4.11, we get that the expression given in 
(8) is a 𝑇 -subgroup. □

At this stage, we can characterize the aggregation of 𝑇 -subgroups when the ambient group has prime order 𝑝 greater than or 
equal to 7 in terms of type-( 𝑝−32 ) domination.

Theorem 4.17. Let 𝐺 = ⟨𝑔⟩ be a group with prime order 𝑝 ≥ 7, 𝑨 an aggregation operator and 𝑇 a t-norm. The following assertions are 
equivalent:

(i) 𝑨 preserves 𝑇 -subgroups of 𝐺 on products.

(ii) 𝑨≫𝑝−3
2

𝑇

Proof. (𝑖) ⇒ (𝑖𝑖) Let us suppose that 𝑨 preserves 𝑇 -subgroups on products. Let us see that, fixing (𝑥1, … , 𝑥𝑛), (𝑦1, … , 𝑦𝑛) ∈ [0, 1]𝑛 such 
that for each 𝑖 ∈ {1, … , 𝑛} one of the following conditions is fulfilled:

- max{𝑥𝑖, 𝑦𝑖} = 1 or

- min
{
𝑥𝑖, 𝑦𝑖

}
≥max

{
𝑥𝑖, 𝑦𝑖

}( 𝑝−32 )
𝑇

,

then:

𝐴(𝑇 (𝑥1, 𝑦1),… , 𝑇 (𝑥𝑛, 𝑦𝑛)) ≥ 𝑇 (𝐴(𝑥1,… , 𝑥𝑛),𝐴(𝑦1,… , 𝑦𝑛)).

For this purpose we will proceed in a similar way as we did in the proof of Theorem 4.13. That is, we will choose 𝑛 𝑇 -subgroups 
𝜇1, … , 𝜇𝑛 and 𝒂, 𝒃 ∈𝐺𝑛 such that

𝑥𝑖 = 𝜇𝑖(𝑎𝑖), 𝑦𝑖 = 𝜇𝑖(𝑏𝑖) and 𝜇𝑖(𝑎𝑖𝑏𝑖) = 𝑇 (𝑥𝑖, 𝑦𝑖) for all 𝑖 ∈ {1,… , 𝑛}.

We will make this choice according to the relationship between 𝑥𝑖 and 𝑦𝑖. If max{𝑥𝑖, 𝑦𝑖} = 1 we will define the 𝑇 -subgroup:

𝜇𝑖(𝑧) =

{
1 if 𝑧 = 𝑒,

min{𝑥𝑖, 𝑦𝑖} if 𝑧 ≠ 𝑒

as in the proof of Theorem 4.3. Then, we will select:

(a) 𝑎𝑖 ≠ 𝑒 and 𝑏𝑖 = 𝑒 if min{𝑥𝑖, 𝑦𝑖} ∈ {𝑥𝑖, 1},
(b) 𝑎𝑖 = 𝑒 and 𝑏𝑖 ≠ 𝑒 if min{𝑥𝑖, 𝑦𝑖} = 𝑦𝑖 < 1.

Otherwise, when max{𝑥𝑖, 𝑦𝑖} ≠ 1, there exists 𝑣 ∈
{
2,… ,

𝑝−3
2

}
such that (𝑀𝑖)

(𝑣−1)
𝑇

≥𝑚𝑖 ≥ (𝑀𝑖)
(𝑣)
𝑇

where:

𝑀𝑖 =max
{
𝑥𝑖, 𝑦𝑖

}
and 𝑚𝑖 =min

{
𝑥𝑖, 𝑦𝑖

}
.

We have this situation because max
{
𝑥𝑖, 𝑦𝑖

}
≥min

{
𝑥𝑖, 𝑦𝑖

}
≥ (max

{
𝑥𝑖, 𝑦𝑖

}
)
( 𝑝−32 )

and thus:

𝑇

13
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𝑚𝑖 ∈
[
(𝑀𝑖)

( 𝑝−32 )
𝑇

,𝑀𝑖

]
=

⋃
𝑗∈{2,…,

𝑝−3
2 }

[
(𝑀𝑖)

(𝑗)
𝑇

, (𝑀𝑖)
(𝑗−1)
𝑇

]
.

In this scenario, we will consider the fuzzy set:

𝜇𝑖(𝑧) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if 𝑧 = 𝑒,

(𝑀𝑖)
(𝑢)
𝑇

if 𝑧 ∈ {𝑔𝑢, 𝑔𝑝−𝑢} with 1 ≤ 𝑢 < 𝑣,

𝑚𝑖 if 𝑧 ∈ {𝑔𝑢, 𝑔𝑝−𝑢} with 𝑣 ≤ 𝑢 ≤
𝑝−3
2 ,

𝑇 (𝑀𝑖,𝑚𝑖) if 𝑧 ∈
{

𝑔
𝑝−1
2 , 𝑔

𝑝+1
2

}
.

Lemma 4.16 ensures that 𝜇𝑖 is 𝑇 -subgroup.
Now, we will select 𝑎𝑖 and 𝑏𝑖 as follows:

(a) If 𝑀𝑖 = 𝑥𝑖, we choose 𝑎𝑖 = 𝑔 and 𝑏𝑖 = 𝑔
𝑝−3
2 ,

(b) If 𝑀𝑖 = 𝑦𝑖, we choose 𝑎𝑖 = 𝑔
𝑝−3
2 and 𝑏𝑖 = 𝑔.

In any case 𝑎𝑖𝑏𝑖 = 𝑔
𝑝−1
2 and therefore:

𝑥𝑖 = 𝜇𝑖(𝑎𝑖), 𝑦𝑖 = 𝜇𝑖(𝑏𝑖) and 𝜇𝑖(𝑎𝑖𝑏𝑖) = 𝑇 (𝑀𝑖,𝑚𝑖) = 𝑇 (𝑥𝑖, 𝑦𝑖).

With this values for 𝒂 and 𝒃 and provided that 𝑨 preserves 𝑇 -subgroups on products, we have that:

𝐴(𝑇 (𝑥1, 𝑦1),… , 𝑇 (𝑥𝑛, 𝑦𝑛)) =𝐴◦�̃�(𝒂𝒃) ≥ 𝑇 (𝐴◦�̃�(𝒂),𝐴◦�̃�(𝒃))

= 𝑇 (𝐴(𝑥1,… , 𝑥𝑛),𝐴(𝑦1,… , 𝑦𝑛)).

(𝑖𝑖) ⇒ (𝑖) Let us suppose that 𝑨≫𝑝−3
2

𝑇 . Given

𝒂 = (𝑎1,… , 𝑎𝑛),𝒃 = (𝑏1,… , 𝑏𝑛) ∈𝐺𝑛

and the 𝑇 -subgroups 𝜇1, … , 𝜇𝑛, we will find (𝑥1, … , 𝑥𝑛), (𝑦1, … , 𝑦𝑛) ∈ [0, 1]𝑛 such that for each 𝑖 ∈ {1, … , 𝑛} either max{𝑥𝑖, 𝑦𝑖} = 1 or 

min{𝑥𝑖, 𝑦𝑖} ≥ (max{𝑥𝑖, 𝑦𝑖})
( 𝑝−32 )
𝑇

. Moreover, we impose that:

𝑥𝑖 ≥ 𝜇𝑖(𝑎𝑖), 𝑦𝑖 ≥ 𝜇𝑖(𝑏𝑖) and 𝜇𝑖(𝑎𝑖𝑏𝑖) ≥ 𝑇 (𝑥𝑖, 𝑦𝑖).

With all this set, the inequality:

𝐴◦�̃�(𝒂𝒃) ≥𝐴(𝑇 (𝑥1, 𝑦1),… , 𝑇 (𝑥𝑛, 𝑦𝑛))

≥ 𝑇 (𝐴(𝑥1,… , 𝑥𝑛),𝐴(𝑦1,… , 𝑦𝑛)) (9)

≥ 𝑇 (𝐴◦�̃�(𝒂),𝐴◦�̃�(𝒃)),

holds and, consequently, 𝑨 preserves 𝑇 -subgroups on products. To choose the value of 𝑥𝑖 and 𝑦𝑖 for each 𝑖 ∈ {1, … , 𝑛} we need to 
consider three different cases:

(a) If 𝜇𝑖(𝑎𝑖𝑏𝑖) ≥min{𝜇𝑖(𝑎𝑖), 𝜇𝑖(𝑏𝑖)} = 𝜇𝑖(𝑎𝑖), we choose:

𝑥𝑖 = 𝜇𝑖(𝑎𝑖) and 𝑦𝑖 = 1 ≥ 𝜇𝑖(𝑏𝑖).

(b) If 𝜇𝑖(𝑎𝑖𝑏𝑖) ≥min{𝜇𝑖(𝑎𝑖), 𝜇𝑖(𝑏𝑖)} = 𝜇𝑖(𝑏𝑖), the selected values are:

𝑥𝑖 = 1 ≥ 𝜇𝑖(𝑎𝑖) and 𝑦𝑖 = 𝜇𝑖(𝑏𝑖).

(c) If min{𝜇𝑖(𝑎𝑖), 𝜇𝑖(𝑏𝑖)} > 𝜇𝑖(𝑎𝑖𝑏𝑖) ≥ 𝑇 (𝜇𝑖(𝑎𝑖), 𝜇𝑖(𝑏𝑖)), then we choose:

𝑥𝑖 = 𝜇𝑖(𝑎𝑖) and 𝑦𝑖 = 𝜇𝑖(𝑏𝑖).

In all of these cases it follows immediately that 𝜇𝑖(𝑎𝑖𝑏𝑖) ≥ 𝑇 (𝑥𝑖, 𝑦𝑖). In addition, for the cases (a) and (b) it is clear that max{𝑥𝑖, 𝑦𝑖} = 1. 

Special attention should be paid to situation (c) as we will prove that the inequality min{𝑥𝑖, 𝑦𝑖} ≥ (max{𝑥𝑖, 𝑦𝑖})
( 𝑝−32 )
𝑇

holds when 
𝑥𝑖 = 𝜇𝑖(𝑎𝑖) and 𝑦𝑖 = 𝜇𝑖(𝑏𝑖).

For this purpose, we will take into account the structure of the 𝑇 -subgroups of this kind of groups. Since 𝐺 = ⟨𝑔⟩ is a prime 
order cyclic group, we can state that 𝐺 = ⟨𝑔𝑠⟩ for all 𝑠 ∈ {1,… , 𝑝− 1}. Furthermore, due to Corollary 4.10 only two situations are 
possible for each 𝑖 ∈ {1, … , 𝑛}. Either 𝜇𝑖(𝑔𝑠) = 1 for all 𝑠 ∈ {1,… , 𝑝} or 𝜇𝑖(𝑔𝑠) ≠ 1 for all 𝑠 ∈ {1,… , 𝑝− 1}. Note that if 𝜇𝑖(𝑔𝑠) = 1 for all 
14
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𝑠 ∈ {1,… , 𝑝}, then 𝜇𝑖(𝑎𝑖𝑏𝑖) ≥min{𝜇𝑖(𝑎𝑖), 𝜇𝑖(𝑏𝑖)} = 𝑇 (𝜇𝑖(𝑎𝑖), 𝜇𝑖(𝑏𝑖)) and hence we will be in the cases (a) or (b). We focus our attention 
on 𝜇𝑖(𝑔𝑠) ≠ 1 for all 𝑠 ∈ {1,… , 𝑝− 1}. Here, there exists 𝑔𝑖 ∈ 𝐺 ⧵ {𝑒} with 1 > 𝜇𝑖(𝑔𝑖) = max{𝜇𝑖(𝑔𝑠) | 𝑠 ∈ {1,… , 𝑝− 1}}. Moreover, as 
𝑎𝑖, 𝑏𝑖 ∈𝐺 = ⟨𝑔𝑖⟩, it is clear that there is 𝑠𝑖 ∈ {1,… , 𝑝− 1} so that min{𝜇𝑖(𝑎𝑖), 𝜇𝑖(𝑏𝑖)} = 𝜇𝑖(𝑔

𝑠𝑖
𝑖
). We show for each possible value of 𝑠𝑖 that:

min{𝜇𝑖(𝑎𝑖), 𝜇𝑖(𝑏𝑖)} = 𝜇𝑖(𝑔
𝑠𝑖
𝑖
) ≥ 𝜇𝑖(𝑔𝑖)

( 𝑝−32 )
𝑇

≥max{𝜇𝑖(𝑎𝑖), 𝜇𝑖(𝑏𝑖)}
( 𝑝−32 )
𝑇

, (10)

where the last inequality is derived from the definition of 𝑔𝑖 . The first inequality comes from the following discussion:

- If 1 ≤ 𝑠𝑖 ≤
𝑝−3
2 , then 𝜇𝑖(𝑔

𝑠𝑖
𝑖
) ≥ 𝜇𝑖(𝑔𝑖)

(𝑠𝑖)
𝑇

≥ 𝜇𝑖(𝑔𝑖)
( 𝑝−32 )
𝑇

.

- If 𝑝+32 ≤ 𝑠𝑖 ≤ 𝑝 − 1, then 𝜇𝑖(𝑔
𝑠𝑖
𝑖
) = 𝜇𝑖(𝑔

𝑝−𝑠𝑖
𝑖

) ≥ 𝜇𝑖(𝑔𝑖)
(𝑝−𝑠𝑖)
𝑇

≥ 𝜇𝑖(𝑔𝑖)
( 𝑝−32 )
𝑇

.

- If 𝑠𝑖 ∈ { 𝑝−1
2 , 𝑝+12 }, since the case where 𝜇𝑖(𝑔

𝑠𝑖
𝑖
) =min{𝜇𝑖(𝑎𝑖), 𝜇𝑖(𝑏𝑖)} > 𝜇𝑖(𝑎𝑖𝑏𝑖) is already settled, the only possibility is that 𝑎𝑖𝑏𝑖 = 𝑔

𝑙𝑖
𝑖

for some 𝑙𝑖 ∉ { 𝑝−1
2 , 𝑝+12 }. Using the same reasoning as in the two previous cases we can deduce that:

𝜇𝑖(𝑔
𝑠𝑖
𝑖
) > 𝜇𝑖(𝑎𝑖𝑏𝑖) ≥ 𝜇𝑖(𝑔𝑖)

( 𝑝−32 )
𝑇

.

Hence, the expression (10) holds and 𝑥𝑖 and 𝑦𝑖 have been appropriately selected in order to ensure (9). This means that 𝑨 preserves 
𝑇 -subgroups of 𝐺 on products. □

A consequence of the previous result and Proposition 3.2 is that, if 𝑨 type-( 𝑝−32 ) dominates 𝑇 , then 𝑨 preserves 𝑇 -subgroups on 
sets.

Corollary 4.18. Given a group 𝐺 with a prime number of elements 𝑝, 𝑨 an aggregation operator and 𝑇 a t-norm. If 𝑨 ≫𝑝−3
2

𝑇 then 𝑨
preserves 𝑇 -subgroups of 𝐺 on sets.

Whenever 𝐺 ∉ , Theorem 3.6 shows that domination is a necessary and sufficient condition for an aggregation operator to 
preserve 𝑇 -subgroups on products. However, in the present situation the domination requirement must be weakened and replaced 
by type-𝑘 domination. Recall that for the minimum t-norm, domination and type-𝑘 domination are equivalent (see point 3 of Re-
mark 3.15). The next example shows that this is not always the case.

Example 4.19. Let us consider the t-norm:

𝑇 (𝑥, 𝑦) =

{
0 if (𝑥, 𝑦) ∈]0,1[2⧵[0.5,1[2,
min{𝑥, 𝑦} otherwise

and the aggregation operator 𝑨 by means of the 𝑛-ary operators:

𝐴(𝑥1,…𝑥𝑛) =

{
1 if 𝑥1 ∈ [0.5,1],
𝑥1 otherwise

with 𝑛 ≥ 2. Now we will prove that 𝑨 𝑇 although 𝑨≫𝑘 𝑇 for all 𝑘 ∈ ℕ. In the first place, let us show that the dominance relation 
is not satisfied. It is enough to take 𝑥𝑖 = 𝑦𝑖 = 0.25 for all 𝑖 ∈ {2, … , 𝑛}, 𝑥1 = 0.75 and 𝑦1 = 0.25:

𝐴(𝑇 (𝑥1, 𝑦1),… , 𝑇 (𝑥𝑛, 𝑦𝑛)) =𝐴(0,… ,0) = 0 < 0.25 = 𝑇 (1,0.25)

= 𝑇 (𝐴(𝑥1,… , 𝑥𝑛),𝐴(𝑦1,… , 𝑦𝑛)).

Now, we will show that 𝑨 ≫𝑘 𝑇 for each 𝑘 ≥ 0. Let us check that inequality (1) holds for all (𝑥1, … , 𝑥𝑛), (𝑦1, … , 𝑦𝑛) ∈ [0, 1]𝑛 such 
that for each 𝑖 ∈ {1, … , 𝑛} one of the following conditions is satisfied:

- max{𝑥𝑖, 𝑦𝑖} = 1.
- min

{
𝑥𝑖, 𝑦𝑖

}
≥ (max

{
𝑥𝑖, 𝑦𝑖

}
)(𝑘)
𝑇

.

We will study the different values of 𝑥1 and 𝑦1. First let us consider that max{𝑥1, 𝑦1} = 1. Without loss of generality, if we suppose 
that 𝑦1 = 1:

𝐴(𝑇 (𝑥1, 𝑦1), 𝑇 (𝑥2, 𝑦2)… , 𝑇 (𝑥𝑛, 𝑦𝑛)) =𝐴(𝑥1, 𝑇 (𝑥2, 𝑦2)… , 𝑇 (𝑥𝑛, 𝑦𝑛)) =𝐴(𝑥1, 𝑥2,… , 𝑥𝑛)

= 𝑇 (𝐴(𝑥1, 𝑥2,… , 𝑥𝑛),1) = 𝑇 (𝐴(𝑥1, 𝑥2,… , 𝑥𝑛),𝐴(𝑦1, 𝑦2,… , 𝑦𝑛)).

These equivalences are deduced from the definition of 𝑇 and 𝐴. The reasoning is analogous if 𝑥1 = 1. Hence, let us suppose that 
1 >max{𝑥1, 𝑦1} ≥min{𝑥1, 𝑦1} ≥ (max

{
𝑥1, 𝑦1

}
)(𝑘). Note that, for this t-norm:

𝑇
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𝑥
(𝑘)
𝑇

=

{
𝑥 if 𝑥 ∈ [0.5,1],
0 otherwise.

Thus, the only two possibilities are:

1. 𝑥1 = 𝑦1 = max{𝑥1, 𝑦1} =min{𝑥1, 𝑦1} ≥ 0.5. Here:

𝐴(𝑇 (𝑥1, 𝑦1), 𝑇 (𝑥2, 𝑦2)… , 𝑇 (𝑥𝑛, 𝑦𝑛)) =𝐴(𝑥1, 𝑇 (𝑥2, 𝑦2),… , 𝑇 (𝑥𝑛, 𝑦𝑛)) = 1 = 𝑇 (1,1)

= 𝑇 (𝐴(𝑥1, 𝑥2,… , 𝑥𝑛),𝐴(𝑦1, 𝑦2… , 𝑦𝑛)).

2. 0.5 >max{𝑥1, 𝑦1} ≥min{𝑥1, 𝑦1}. Then:

𝐴(𝑇 (𝑥1, 𝑦1), 𝑇 (𝑥2, 𝑦2)… , 𝑇 (𝑥𝑛, 𝑦𝑛)) =𝐴(0, 𝑇 (𝑥2, 𝑦2)… , 𝑇 (𝑥𝑛, 𝑦𝑛)) = 0 = 𝑇 (𝑥1, 𝑦1)

= 𝑇 (𝐴(𝑥1, 𝑥2,… , 𝑥𝑛),𝐴(𝑦1, 𝑦2,… , 𝑦𝑛)).

Therefore, 𝑨≫𝑘 𝑇 and 𝑨 𝑇 so we can claim that type-𝑘 domination and domination are indeed two different properties in general.

4.4. Cyclic groups with order 𝑝𝑚 > 4, being 𝑝 a prime and 𝑚 an integer greater than or equal to 2

In this section, we will show that we need full domination when we consider groups in  with non-prime order greater than 4.

Theorem 4.20. Let 𝐺 = ⟨𝑔⟩ be a group with order 𝑝𝑚 > 4 being 𝑝 a prime and 𝑚 ∈ ℕ greater than or equal to 2. Let 𝑨 be an aggregation 
operator and 𝑇 a t-norm. The following are equivalent:

(i) 𝑨 preserves 𝑇 -subgroups of 𝐺 on products.

(ii) 𝑨≫ 𝑇 .

Proof. (𝑖𝑖) ⇒ (𝑖) is straightforward from Theorem 3.5.
(𝑖) ⇒ (𝑖𝑖) Let (𝑥1, … , 𝑥𝑛), (𝑦1, … , 𝑦𝑛) ∈ [0, 1]𝑛 be arbitrary points. Since 𝐺 is a cyclic group with order 𝑝𝑚, we know that 𝑔𝑝 ∈ ⟨𝑔⟩ has 

order 𝑝𝑚−1. Additionally, as 𝑚 ≥ 2, {𝑒} ⊊ ⟨𝑔𝑝⟩ ⊊ 𝐺. From now on, we will divide the process in two steps. First we will show that the 
fuzzy sets 𝜇1, … , 𝜇𝑛 defined as follows:

𝜇𝑖(𝑧) =

⎧⎪⎪⎨⎪⎪⎩

1 if 𝑧 = 𝑒,

max{𝑥𝑖, 𝑦𝑖} if 𝑧 ∈ ⟨𝑔𝑝⟩ ⧵ {𝑒},
min{𝑥𝑖, 𝑦𝑖} if 𝑧 ∈ {𝑔, 𝑔−1},
𝑇 (𝑥𝑖, 𝑦𝑖) otherwise

(11)

are 𝑇 -subgroups for each 𝑖 ∈ {1, … , 𝑛}. We will then use these 𝑇 -subgroups to prove that 𝐴 dominates 𝑇 .
First, it is necessary to check that given 𝑖 ∈ {1, … , 𝑛}, 𝜇𝑖 is well defined. That is ⟨𝑔𝑝⟩ ∩ {𝑔, 𝑔−1} = ∅. But whether we assume that 

𝑔 ∈ ⟨𝑔𝑝⟩ as if we assume 𝑔−1 ∈ ⟨𝑔𝑝⟩, we will reach the contradiction ⟨𝑔⟩ ⊆ ⟨𝑔𝑝⟩ ⊊ ⟨𝑔⟩. So these 𝑇 -subgroups are well defined.
We can now check that 𝜇𝑖 satisfies 𝑇 -subgroup properties. 𝐺1 y 𝐺2 are trivially fulfilled. We shall then work on 𝐺3. Given 

𝑧1, 𝑧2 ∈ 𝐺, such property is guaranteed if 𝜇𝑖(𝑧1𝑧2) ≥ min{𝜇𝑖(𝑧1), 𝜇𝑖(𝑧2)}. Let us study the case in which min{𝜇𝑖(𝑧1), 𝜇𝑖(𝑧2)} > 𝜇𝑖(𝑧1𝑧2). 
This strict inequality together with the construction of 𝜇𝑖 ensures that 𝜇𝑖(𝑧1), 𝜇𝑖(𝑧2) ∈ {1, 𝑥𝑖, 𝑦𝑖} and 𝜇𝑖(𝑧1𝑧2) ∈ {𝑥𝑖, 𝑦𝑖, 𝑇 (𝑥𝑖, 𝑦𝑖)}. Hence, 
the only possible situations are the following:

(𝑎) If 𝑧1 = 𝑒 or 𝑧2 = 𝑒, the inequality in 𝐺3 trivially holds.
(𝑏) If 𝑧1 ∉ ⟨𝑔𝑝⟩, then 𝜇𝑖(𝑧1) =min{𝑥𝑖, 𝑦𝑖}. Consequently, 𝜇𝑖(𝑧1𝑧2) = 𝑇 (𝑥𝑖, 𝑦𝑖) and:

𝑇 (𝜇𝑖(𝑧1), 𝜇𝑖(𝑧2)) ∈ {𝑇 (𝑥𝑖, 𝑦𝑖), 𝑇 (min{𝑥𝑖, 𝑦𝑖},min{𝑥𝑖, 𝑦𝑖})}.

In all cases, 𝜇𝑖(𝑧1𝑧2) ≥ 𝑇 (𝜇𝑖(𝑧1), 𝜇𝑖(𝑧2)). In the case of 𝑧2 ∉ ⟨𝑔𝑝⟩, the reasoning is analogous.
(𝑐) If 𝑧1, 𝑧2 ∈ ⟨𝑔𝑝⟩ ⧵ {𝑒}, then 𝑧1𝑧2 ∈ ⟨𝑔𝑝⟩ and 𝜇𝑖(𝑧1) = 𝜇𝑖(𝑧2) = max{𝑥𝑖, 𝑦𝑖}. Moreover 𝜇𝑖(𝑧1𝑧2) ∈ {1, max{𝑥𝑖, 𝑦𝑖}}. Hence, in all the 

possible situations 𝜇𝑖(𝑧1𝑧2) ≥ 𝑇 (𝜇𝑖(𝑧1), 𝜇𝑖(𝑧2)).

With the previous discussion, we have shown that the fuzzy sets 𝜇1, … , 𝜇𝑛 are 𝑇 -subgroups. In the following, it will be also useful 
to note that 𝑔𝑔𝑝 ∉ ⟨𝑔𝑝⟩ ∪ {𝑔, 𝑔−1}:

- If 𝑔𝑔𝑝 ∈ ⟨𝑔𝑝⟩ then there exists 𝑠 ∈ℤ so that 𝑔𝑔𝑝 = (𝑔𝑝)𝑠. Therefore, 𝑔 = (𝑔𝑝)𝑠−1 ∈ ⟨𝑔𝑝⟩ which is a contradiction.
- If 𝑔𝑔𝑝 = 𝑔, then 𝑔𝑝 = 𝑒 and this can not happen when 𝑜(𝑔𝑝) = 𝑝𝑚−1 with 𝑚 ≥ 2.
- If 𝑔𝑔𝑝 = 𝑔−1, then 𝑔𝑝+2 = 𝑒 and 𝑜(𝑔) divides 𝑝 + 2. However, if we have 𝑝𝑚 > 4, it is easy to show that 𝑝𝑚 > 𝑝 + 2, getting again to 

a contradiction.
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Hence, we can claim that the fuzzy sets 𝜇1, … , 𝜇𝑛 given by the expression (11) are indeed 𝑇 -subgroups and that 𝑔𝑔𝑝 ∉ ⟨𝑔𝑝⟩ ∪
{𝑔, 𝑔−1}. To finish the proof, let us select 𝒂 = (𝑎1, … , 𝑎𝑛), 𝒃 = (𝑏1, … , 𝑏𝑛) ∈𝐺𝑛 such that for each 𝑖 ∈ {1, … , 𝑛}:

- If max{𝑥𝑖, 𝑦𝑖} = 𝑥𝑖, then 𝑎𝑖 = 𝑔𝑝 and 𝑏𝑖 = 𝑔.
- If max{𝑥𝑖, 𝑦𝑖} = 𝑦𝑖, then 𝑎𝑖 = 𝑔 and 𝑏𝑖 = 𝑔𝑝.

Thus, 𝜇𝑖(𝑎𝑖) = 𝑥𝑖 and 𝜇𝑖(𝑏𝑖) = 𝑦𝑖. Furthermore, as 𝑔𝑔𝑝 ∉ ⟨𝑔𝑝⟩ ∪ {𝑔, 𝑔−1}, it follows that 𝜇𝑖(𝑔𝑔𝑝) = 𝑇 (𝑥𝑖, 𝑦𝑖). Therefore:

𝐴(𝑇 (𝑥1, 𝑦1),… , 𝑇 (𝑥𝑛, 𝑦𝑛)) =𝐴◦�̃�(𝒂𝒃) ≥ 𝑇 (𝐴◦�̃�(𝒂),𝐴◦�̃�(𝒃))

𝑇 (𝐴(𝑥1,… , 𝑥𝑛),𝐴(𝑦1,… , 𝑦𝑛)),

which concludes the proof. □

4.5. Infinite groups

Finally we must analyze the situation where 𝑇 -subgroups are defined over infinite groups included in . As mentioned at the 
beginning of the paper, the only groups with these characteristics are the Prüfer 𝑝-groups ℤ(𝑝∞) with 𝑝 a prime number. These groups 
have the characteristic feature that all their elements have finite order 𝑝𝑚 for some 𝑚 ∈ ℕ. In this infinite groups, in order to ensure 
the preservation of 𝑇 -subgroups it is again necessary to demand the domination of 𝑨 over 𝑇 as we may have expected given the 
results in the preceding sections.

Theorem 4.21. Let ℤ(𝑝∞) be a Prüfer 𝑝-group for some prime number 𝑝, 𝑨 an aggregation operator and 𝑇 a t-norm. The following statements 
are equivalent:

(i) 𝑨 preserves 𝑇 -subgroups of ℤ(𝑝∞) on products.

(ii) 𝑨≫ 𝑇 .

Proof. (𝑖𝑖) ⇒ (𝑖) It is a direct consequence of Theorem 3.5.
(𝑖) ⇒ (𝑖𝑖) As we are working with a Prüfer 𝑝-group that contains copies of ℤ𝑝𝑚 for each 𝑚 ∈ ℕ, we can find an element 𝑔 ∈ ℤ(𝑝∞)

such that 𝑜(𝑔) = 𝑝3. Once we select this element, with a completely analogous reasoning to that of Theorem 4.20, we obtain the 
result. □

Remark 4.22. Whenever 𝐺 is a group with 5 or more elements and has a non-trivial proper subgroup, the preservation of 𝑇 -
subgroups of 𝐺 on products is equivalent to domination. In other words, the only groups for which the preservation of 𝑇 -subgroups 
is not always equivalent to domination are those cyclic groups with prime order or those with a cardinality of 4.

5. Conclusions and future work

In this work we have characterized the preservation of 𝑇 -subgroups on products when the lattice of subgroups of the ambient 
group is a chain. When this group is the cyclic group of order 4 or a prime order group we have proven that a new property is 
required in order to characterize preservation of 𝑇 -subgroups under aggregation. This new property that we have named type-𝑘
domination is less restrictive than domination and hence, there will be more aggregation operators preserving 𝑇 -subgroups in the 
cases where type-𝑘 domination is needed.

Additionally, we have obtained some results that provide valuable information about the structure of 𝑇 -subgroups when defined 
over a cyclic group.

Finally, we have obtained some consequences about the preservation of 𝑇 -subgroups on sets. We are currently conducting a 
thorough study of aggregation of 𝑇 -subgroups on sets, which we hope to present soon.
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