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ABSTRACT

In this work, we study numerically the periodicity of regular regions embedded in chaotic states for the case of an anisotropic magnetic
particle. The particle is in the monodomain regime and subject to an applied magnetic field that depends on time. The dissipative Lan-
dau–Lifshitz–Gilbert equation models the particle. To perform the characterization, we compute several two-dimensional phase diagrams in
the parameter space for the Lyapunov exponents and the isospikes. We observe multiple transitions among periodic states, revealing complex
topological structures in the parameter space typical of dynamic systems. To show the finer details of the regular structures, iterative zooms
are performed. In particular, we find islands of synchronization for the magnetization and the driven field and several shrimp structures with
different periods.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0006018

Dissipative magnetization dynamics of parametrically driven
anisotropic magnetic particles are analyzed. Our results show
intricate dynamical behaviors. In particular, bi-stability, period-
doubling bifurcations, chaotic states, as well as chaotic transients
have been found. In the present article, we present a systematic
study of the periodicity of the aforementioned system, through
isospike diagrams. In addition, the largest Lyapunov exponent
(LLE) and bifurcation diagrams are computed. We examine the
effects of the external field and the particle’s anisotropy.

I. INTRODUCTION

The characterization of periodicity and chaos is one of the
most challenging tasks in nonlinear dynamical systems, and many
techniques have been developed.1–4 Commonly, the differentiation
between chaotic and (quasi-)periodic states is given by the Lya-
punov exponents.5 Using this method, some topology structures of
regular regions embedded in chaotic domains have been observed
in two-dimensional parameter space, like shrimp, boomerangs, and
the accumulations of both of them.6,7 Since they have been found in

several dynamical systems,8–14 one can establish that there are robust
phenomena. Therefore, a natural question arises about the structure
of these (multi-)periodic regions. One novel method to numerically
characterize the periodicity is the isospike diagrams.15,16 This method
measures the number of spikes per period of oscillation. Apart from
the discrimination between chaotic and regular states, an isospike
diagram reveals how the periodicity changes when the parameters
are tuned, generating plenty of new information, which cannot be
tracked by the Lyapunov exponent method. These diagrams have
been applied in maps, electrical systems, chemical reactions, and
convection in fluids, to name just a few.17–30

On the other hand, the magnetization dynamics of mag-
netic particles is described by the Landau–Lifshitz equation and
its generalizations.31–33 These kinds of equations have strong non-
linearities, and, therefore, complex dynamical behaviors are to
be expected.34–60 In particular, when the magnetic field is time-
dependent, chaotic states34 and period-doubling bifurcations,45

as well as chaotic transients,50 have been numerically observed.
Moreover, two-dimensional phase diagrams based on Lyapunov
exponents have been calculated finding complex transitions among
periodic, quasi-periodic, and chaotic states,62,63 as well as shrimp
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structures.14 Recently, chaotic states due to driven pumping in a
mono-domain regime have been experimentally found.61 Never-
theless, to the best of our knowledge, a systematic study of the
periodicity in magnetic systems has not been provided.64

The aim of the paper is to analyze numerically the periodicity
of the magnetization dynamics of an anisotropic magnetic particle
in the presence of a time-dependent magnetic field that has a har-
monic as well as a constant term. We compute several Lyapunov and
isospikes diagrams as a function of the driven amplitudes and fre-
quency and as a function of the anisotropy’s coefficients. Due to the
complexity of the diagrams, iterative zooms are applied, and bifurca-
tion diagrams are analyzed for specific lines in the parameter space.
The article is organized as follows: In Sec. II, the model for the mag-
netization dynamics is presented. In Sec. III, the numerical analysis
is performed, and the corresponding discussions are provided. Brief
remarks are finally given in Sec. IV.

II. MAGNETIZATION DYNAMICS

Let us suppose that a magnetic particle is represented by a mag-
netic monodomain,32,61 such that its magnetization is depicted by a
magnetization vector M = M(t). The evolution of the magnetization
is determined by the dimensionless Landau–Lifshitz–Gilbert (LLG)
equation,

κ
dm

dτ
= −m × heff − αm × (m × heff), (1)

where m = M/Ms, τ = t|γ |Ms, and κ = 1 + α2. Here, γ is the gyro-
magnetic factor, which is associated with the electron spin and its
numerical value is |γ | = |γe|µ0 ≈ 2.21 × 105 mA−1 s−1 and Ms is
the saturation magnetization. This scaling of the variables leads to
|m| = 1, which is a conserved quantity of the system.

Additionally, α denotes the dimensionless phenomenological
dissipation coefficient, which is a property of the magnetic material.
Representative orders of magnitude are 10−4 to 10−3 in garnets or
10−2 or greater for cobalt, nickel, or permalloy (Ni80Fe20).32,64 An
experimental value of the saturation magnetization is, for exam-
ple, Ms[Co] ≈ 1.42 × 106 A/m ≈ 17.8 kOe for cobalt based materials,
implying that time scale is (|γ |Ms[Co])

−1
≈ 3 ps. In the case of mag-

netic materials with less saturation magnetization, one can increase
the time scale, like in the case of Nickel nanoparticles.

The effective field, heff, is given by

heff = hAP +

3∑

j=1

βj(m · n̂j)̂nj, (2)

where hAP is the external magnetic field and the coefficient βj mea-
sures anisotropy along the axis nj. Here, the subindexes j = (1, 2, 3)
represent the main axes, denoted by the Cartesian coordinates as
(x, y, z). We applied an external magnetic field hAP composed by two
terms, a constant longitudinal term and a periodical transversal term
with fixed frequency and amplitude,

hAP = h0 + hT sin(�τ + φ), (3)

where h0 (||̂z), hT (⊥ ẑ), � are time-independent, and φ is a constant
phase. The dimensionless field and frequency are h = H/Ms and
� = ω/(γ Ms) respectively. The field amplitude and frequency can

be expressed as a function of Ms and (γ Ms), respectively. Com-
mon values for the amplitude and frequencies are in the range of
100–101 kOe and GHz, respectively.50,55,61 We choose to vary those
parameters according to their experimental range values.

The second term of the right side of Eq. (2) corresponds to
the anisotropy field. This term takes into account the fact that the
magnetic properties depend on the direction that are measured.65

This term is due to several factors as the crystalline, magneto-
elastic, or the shape anisotropy. We remark that the effect of the
anisotropies strongly modifies the dynamical behavior of the mag-
netic particles.14,54

III. NUMERICAL SIMULATIONS

In this section, we explore through intensive numerical simu-
lations the dynamics of Eq. (1). Let us note that because we have a
time-dependent magnetic field, the system is non-autonomous. To
write the system in autonomous form, the LLG equation is first pro-
jected onto Cartesian coordinates, then a new variable is introduced
by the transformation W = �τ . This produces an extra differential
equation dW/dτ = � for the new variable W. Therefore, the sys-
tem is converted into an autonomous four-dimensional dynamical
system. Equation (1) conserves its norm (|m| = 1); consequently,
the effective dimension is three. In Cartesian representation, the
corresponding autonomous system can be explicitly written as

κ
dmx

dτ
= −hzmy + mymzβy − mymzβz + hymz sin(W + φ)

− α

[
hzmxmz − mxm

2
yβx − mxm

2
zβx + mxm

2
yβy + mxm

2
zβz

+ hymxmy sin(W + φ) − hxm
2
y sin(W + φ)

− hxm
2
z sin(W + φ)

]
,

κ
dmy

dτ
= hzmx − mxmzβx + mxmzβz − hxmz sin(W + φ)

− α
[
hzmymz + m2

xmyβx − m2
xmyβy − mym

2
zβy + mym

2
zβz

− hym
2
x sin(W + φ) + hxmxmy sin(W + φ)

− hym
2
z sin(W + φ)

]
,

κ
dmz

dτ
= mxmyβx − mxmyβy − hymx sin(W + φ) + hxmy sin(W + φ)

− α

[
−hzm

2
x − hzm

2
y + m2

xmzβx + m2
ymzβy − m2

xmzβz

−m2
ymzβz + hxmxmz sin(W + φ) + hymymz sin(W + φ)

]
.

dW

dτ
= �. (4)

This system is numerically integrated using a fourth-order
Runge–Kutta method with a fixed time step of δτ = 0.01. The
dynamic behavior of the magnetic particle is mainly described
by three types of dynamical indicators: the largest Lyapunov
exponents,5 the technique of isospike diagrams,15,16 and in the case of
regular states, the period distribution. Finally, bifurcation diagrams1

are used as a complementary indicator.
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The Lyapunov exponents quantify the divergence between two
initially close trajectories of the vector field. Therefore, they are used
to determine chaotic and regular regions. They are denoted by λj

and are ordered in descending manner, λ1 > λ2 > · · · > λN, with
λ1 being the largest Lyapunov exponent (LLE). Since the effective
dimension of the system is three, the LLE is powerful enough to
analyze the chaotic regimes. If LLE is positive (λ1 > 0), the state is
chaotic, while if it is negative or zero (λ1 6 0) the states are regular.
Detailed works on the calculation of the exponents and their appli-
cations can be found in Refs. 1, 4, 7, and 66–70. In the following
diagrams of the largest Lyapunov exponent, positive values that rep-
resent chaotic states are depicted in color code, while regular states
are depicted in black.

On the other hand, to obtain the isospike diagrams, that is,
to find the number of peaks per period of the oscillations, we first
calculate the Lyapunov exponents and perform the integrations for
3 × 105 time steps, recording the maximums (or minimums) of the
time series of the magnetization vector of each component, and
check whether the peaks are repeated or not. In most of the cases,
we use a palette of 16 colors to represent the number of peaks con-
tained in a period of oscillations, as indicated by the color bars in the
figures. States with more than 16 peaks are drawn in gray. The black
color represents chaotic states. An advantage of the isospike dia-
grams is that they may also be systematically implemented to work
with experimental data.17,21 Moreover, to compute the period of each
time series, we calculate the Fourier transform of each component
and estimate the oscillation period from the Fourier spectrum. Here,
the Fourier transform of the magnetization component mj will be

denoted as Fmj
(f ), where f is its frequency with j = (x, y, z). Further-

more, the precision is improved by performing a linear interpolation
near the highest peak in the Fourier spectrum. This allows determin-
ing the oscillation period accurately and then a comparison is done
with the period obtained by the isospike method.

Due to the large number of parameters, we fix the damping
coefficient at α = 0.05 in all the simulations. Besides, in most of
the cases, we fix the phase in the driving field at φ = 0. The rest
of the parameters are varied to study their influence on dynamical
behavior. We find that small variations of the different parameters
as the magnetic field components, frequency, or anisotropy coeffi-
cients imply significative changes in the periodicity of the system. All
two-dimensional phase diagrams have a resolution of 2000 × 2000
points in the parameter space, such that the points are equidistant.
In Subsections III A–III C, the influences of those parameters are
analyzed in detail.

A. Effects of the applied field

Figure 1 presents the largest Lyapunov exponent phase diagram
and the corresponding isospike diagrams for the components mx,
my, and mz as a function of the oscillatory field amplitude hx and the
frequency �. Note that different color codes are applied for LLE and
the isospikes diagrams. As Fig. 1 shows, when comparing the two
types of diagrams, both provide the same essential information: they
precisely distinguish between chaos and periodicity. However, the
isospikes diagrams are more informative. They show how the time
series change in regions where the system presents different periods.

FIG. 1. Phase diagrams in color code as a function of the frequency� and the driven field amplitude hx . Panel (a) represents the largest Lyapunov exponent. Frames (b), (c),
and (d) correspond to the isospike diagrams for the magnetization components (mx ,my ,mz), respectively. The fixed parameters are hy = 1.0, hz = 4.0, φ = 0, βx = 4.0,
βy = 0.0, βz = −1.0, and α = 0.05.
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FIG. 2. Isospike diagram for the mx component as a function of the frequency �

and the field amplitude hx . The fixed parameters are: hy = 1.0, hz = 4.0, φ = 0,
βx = 4.0,βy = 0.0,βz = −1.0, andα = 0.05. Here, the range of the frequency
takes small values and its scale is logarithmic.

FIG. 3. Isospike diagram for the mx component as a function of the field ampli-
tudes hz and hx . The fixed parameters are� = 1.0, βx = 4.0, φ = 0, βy = 0.0,
βz = −1.0, hy = 1.0, and α = 0.05.

We consider a three-dimensional model for the magnetic moment;
Figs. 1(b), 1(c), and 1(d) show the isospikes diagrams for the com-
ponents mx, my, and mz, respectively. It shows that the distribution
of the registered peaks depends largely on the component. Hence,
changes in the regular phases of the isospikes diagram are expected
when different components are analyzed. Although they show sim-
ilar structures, the specific details of each diagram depend on the
dynamical variable considered.

Furthermore, these diagrams also show that chaos occurs only
above a certain field strength hx. Indeed, chaos first appears at a
finite frequency, which corresponds roughly to the characteristic
time scale of magnetization dynamics. For smaller frequencies, the
field amplitude has to be large to experience chaos. Small frequen-
cies � < 0.1 make the appearance of chaos difficult. Besides, as the
number of peaks increases, the frequency decreases above a cer-
tain field strength hx. The increment in the number of peaks is due
to the lower frequency and above a threshold field value. The sys-
tem shows a reversal of the magnetization in the component mx,
caused by the oscillating field hx. When the field is oscillating and
exceeds the threshold value at low frequency, the system reverses
the component mx at hx > 0. If the field takes values less than zero,
mx reverts and oscillates around zero values. The number of oscilla-
tions increases as the frequency decreases; therefore, the number of
peaks will grow as well. However, for high frequencies, the reversion
time decreases; this causes the magnetization vector to perform lit-
tle or no oscillation with the corresponding decrease in the number
of peaks. For hx lower than the threshold value and low frequencies,
the field strength is not enough to reverse the mx component, reduc-
ing also the number of peaks. If in a certain region of the diagram,
the three components of the magnetization vector oscillate with a
single peak, which is represented by blue color in the isospike dia-
grams, then the system is synchronized with the field. Hence, we can
observe synchronization islands with the same period appearing at
field values below a certain intensity.

FIG. 4. Bifurcation diagram of the mx component and the largest Lyapunov
exponent as a function of hx for the line marked in Fig. 3 at hz = 4.8.

Chaos 30, 093112 (2020); doi: 10.1063/5.0006018 30, 093112-4

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

FIG. 5. Time series of the mx component and their
corresponding amplitude of Fourier transform for the
points marked in Fig. 4. The insets in the Fourier
spectrum show 3D phase diagrams of the magnetiza-
tion components. The corresponding field values are
hx = 0.30, hx = 0.38, and hx = 0.64, respectively.

Let us also remark that when the frequency � takes smaller val-
ues, most states are regular with higher periodicity. To illustrate this
phenomenon, Fig. 2 shows the phase diagram in color code of the
isospike for the mx component as a function of � and hx. Here, the
range of � is between 10−4 and 10−1, and the scale is chosen as log-
arithmic. The rest of the parameters are the same as in Fig. 1. We
note that only a small portion of the figure, close to region 0.18 <

hx < 0.19 and 0.05 < � < 0.1, exhibits chaotic states. Besides, we
can observe that the system presents higher periodicities, such that
the number of peaks increases substantially in comparison with what
occurs for larger values of �. Indeed, the color code used in this
figure to measure the isospikes has a range of tens instead of unity.
Let us comment that to compute this diagram, the integration time
has been increased to 2 × 106 time steps after the transient. More
details on this figure can be found in the supplementary material of
the article.

Interesting results are presented when both the static and
driven field amplitudes hz and hx are varied simultaneously as

shown in Fig. 3. The isospike diagram of the mx component shows
some well-known structures of the dynamic systems, the so-called
shrimps,6 depicted in the center of the two panels of the figure. As
it can be seen in the isospike diagrams, the shrimps are complex
structures composed of an infinite succession of periodic oscilla-
tions immerse in a chaotic phase. As the number of peaks grows,
a striking feature is distorted more and more, as the periodic field
amplitude increases. The regular phases have a rather complex orga-
nization, invaded by shrimp sequences, that is, by sequences of
islands in which high periodicity behavior are found and with a high
number of peaks per period. In addition, the phase diagram shows
well-defined boundaries when the transition between the number of
peaks occurs and where the shrimp sequences accumulate. In the
phase diagram, we can see specific points marked and a white line
for hz = 4.8; along this line, the bifurcation diagram for the compo-
nent mx is shown in the upper panel of Fig. 4. The lower panel shows
the LLE as a function of hx. All branching diagrams were calculated
by scanning the white line from left to the right, always starting
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FIG. 6. Phase diagrams of the largest Lyapunov exponent in color code as a
function of the phase φ and the driven field amplitude hx . The fixed parameters
are hy = 1.0, hz = 4.8,� = 1.0,βx = 4.0,βy = 0,βz = −1.0, andα = 0.05.

with the same fixed initial condition and showing the evolution of
the local peaks, of the mx component. For a better understanding,
it contains blue lines that delimit specific points in the phase dia-
gram; each intersection with a branch of the bifurcation diagram is
marked by a point. This point denotes a maximum (or a minimum)
of the time series; hence, the number of intersects represents the
number of peaks per period. In both cases, the bifurcation diagram
shows a clear coincidence of the information provided by the Lya-
punov exponents and the isospike diagram. It can be also seen that
the route to chaos for 0.30 < hx < 0.40 is through period-doubling
cascades. The region between 0.40 < hx < 0.84 shows a window in
which periodic and chaotic dynamics are intermingled, inside a con-
tinuum of the branches of the bifurcation diagram whenever λ1 = 0
is observed. Moreover, when λ1 > 0, the chaotic behavior is denoted
by windows with diffused points. Finally, when hx > 0.84, one
observes a periodic region with time series containing three peaks.

Figure 5 shows the time series for the mx, and the corre-
sponding amplitude of the Fourier transform as a function of the
frequency, f, for particular cases of hx taken at the specific val-
ues corresponding to the vertical lines denoted by the letters A, B,
and C in Fig. 4. We can observe in the panels how the peaks are
deformed, presenting slight distortions. They present an increase in
the period as the number of spikes increases. The time series illus-
trates a complex periodic dynamics. Besides, we can infer from the
Fourier spectrum that the states are periodic. In the three cases,
the frequencies are commensurate. We always have the fundamen-
tal frequency and the harmonics and sometimes sub-harmonics
peaks with respect to the forcing frequency. We emphasize that we
have not found quasi-periodic states in this range of parameters.
Indeed, quasi-periodic states would have incommensurate peaks in
the Fourier spectrum.

Let us also analyze the effect of the phase in the driving field, φ.
Figure 6 shows the largest Lyapunov exponent color coded as a func-
tion of the phase φ and the driven field amplitude hx. We observe
that only small changes appear as a function of the phase, φ. We also
recognize that when the field increases, chaotic bands are present.
On the contrary, for values hx . 0.4, only regular states are found.

FIG. 7. Phase diagrams as a function of the anisotropy coefficients βz and βx .
(a) Representation in terms of the LLE. (b) Isospike diagram for mx component.
The fixed parameters are � = 1.0, hx = 2.45, hy = 2.45, hz = 0.10, φ = 0,
βy = 2.0, and α = 0.05.

B. Effect of anisotropy

In order to explore in more detail the influence of the material’s
parameters on the chaotic and regular states, we focus, in particular,
on the effect of anisotropy. Figure 7 displays phase diagrams based
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FIG. 8. Isospikes diagram for the mx component of the region enclosed by the
white rectangle in Fig. 7.

on the largest Lyapunov exponent and the isospike diagram for the
mx as a function of βz and βx. As before, the phase diagram of the
Lyapunov exponents shows good agreement with the information
of the phase diagram based on the number of spikes per period.
There is no trend or symmetry due to the effect of anisotropy, but
shrimp-like structures appear as mentioned above. In the upper dia-
gram, the black regions represent regular islands embedded in the
chaotic sea. For positive values of both constants (βx, βz), we observe
a predominance of regular behavior. For a deeper insight, we per-
form the isospike diagram at the lower panel. Here, we analyze the
periodicity of these regular islands finding that there exist multiple
periodic regions with complex shapes. Indeed, to get more infor-
mation, we have chosen two interesting areas and performed the
iterative zooms shown in Fig. 8. The green box contains a typi-
cal shrimp delimited by 0.5 < βx < 3.8 and −6 < βz < −3, while
the white box between 2.2 < βx < 5 and 1.8 < βz < 4.2 contains
a succession of different periods depicted in Fig. 8. Note that this
fact is not reflected in the upper diagram; therefore, the analysis of
these kinds of features with isospike diagrams becomes a powerful
tool.

Figure 8 shows an enlarged view of the white rectangle of Fig. 7.
The transition between different periodicities with clearly defined
borders is recognized. In the largest area, the system presents three
spikes, while the second one has four spikes. After several transitions
of regions with different periodicities, an abrupt transition to chaos
is observed. This is confirmed by the bifurcation diagram of the mx

component shown in Fig. 9. The bifurcation diagram fits perfectly
with in the LLE, with the difference that the branches are not contin-
uous, which can be an effect of anisotropy. Again, between βx = 3.6

FIG. 9. Bifurcation diagram of the mx component and the largest Lyapunov
exponent as a function of βx for the line marked in Fig. 8 at βz = 2.25.

and βx = 3.7 (λ1 > 0) a diffuse point window appears, which is a
hallmark of chaotic behavior. Let us also remark that the effect of
anisotropy causes an increase of the number of peaks when βx < 3.6.
Nevertheless, for βx > 3.7, the number of peaks decreases. This vari-
ation is different from that caused by the effect of the field hx due
to the magnetic reversal; in this case, the mx component oscillates
around positive values without a full reversal change. Note that in
the case of Fig. 4(a), the bifurcation diagram is constructed by fol-
lowing the values of the local minima (dips). On the contrary, the
bifurcation diagram of Fig. 9 is constructed with the local maxima
(peak values). This is just an esthetic choice because either option is
a valid choice for constructing a bifurcation diagram.

Figure 10 shows the isospikes diagrams for the three magne-
tization components (mx, my, mz). Similar characteristics are pre-
sented as described above. In particular, the peaks of my and mz

produce a similar diagram to the mx one. In panels (a) and (b), it
is easy to recognize that, although the variables mx and my oscil-
late differently, the general structure of the diagrams is the same, the
difference being simply in the number of peaks per period. Since the
system contains a constraint, |m| = 1, there is a link among the three
components in the number of the spikes. Furthermore, the presence
of shrimps that appears stretched in various forms can be observed
with an internal structure composed of more than one period.

Finally, a new type of phase diagram is shown at the bot-
tom right side of Fig. 10(d). In this panel, the period distribu-
tion is presented, such that the parameters are in color coding
according to the period of their corresponding oscillations. Chaotic
states are shown in black. As evident, period diagrams can also
reveal details of the substructures that form periodicity islands.
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FIG. 10. Phase diagrams for the region enclosed by the green rectangle in Fig. 7. Frames (a)–(c) show the isospike diagrams for the componentsmx ,my , andmz, respectively.
Frame (d) shows the period distribution diagram, in which chaotic states are depicted in black.

However, to reveal greater details in this kind of graph, it is usu-
ally necessary to define a higher cut-off period; more informa-
tion can be found in Ref. 27. We can observe that most of the
central shrimp structure has lower values of the periods, while
in both edges, the periods increase their values in a symmet-
ric fashion. The fundamental period is directly related to the �

value, the forcing angular frequency. Indeed, if � = 1, then the
period is T = 2π/� ≈ 6.28. However, we see in Fig. 10(d) that
only the central part of the shrimp structure corresponds to the
fundamental period T ≈ 6.28. On the edges of the structure, the

period is increased, which indicates that the actual observed fre-
quency is decreased with respect to the angular forcing frequency.
Hence, at the edges of shrimp, the states are periodic but we
observe sub-harmonic responses with respect to the forcing fre-
quency.

C. Effect of initial conditions

Since the system is nonlinear, multiple stable solutions can
be found depending on the initial conditions for the same fixed
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FIG. 11. 3D phase diagram of (mx ,my ,mz) for 10
6 different initial conditions.

The color code indicates the resulting LLE, such that green-blue regions indicate a
chaotic regime and the black regions indicate a periodic one. The fixed parameters
are hy = 0.82, hy = 1.0, hz = 4.0, φ = 0, βx = 4.0, βy = 0.0, βz = −1.0,
and α = 0.05.

parameters. We illustrate this interesting phenomenon in the LLG
equation. We started Eq. (1) with 106 different initial conditions
covering the unit sphere for the fixed values of parameters of Fig. 5
at hx = 0.82. Figure 11 shows a 3D phase diagram of (mx, my, mz),
and the color code indicates the resulting LLE. The black regions
correspond to periodic regimes, and the green-blue regions refer
to chaotic ones. Multi-stability is observed, between regular and
chaotic states. Additional details are provided in the supplementary
material on the multi-stability question.

IV. FINAL REMARKS

Numerical simulations of the magnetization dynamics of
a magnetic particle using isospike diagrams show that a time-
dependent magnetic field induces states with different periodicity.
The transitions between regular states with different periodicity
delimit well-defined boundaries in the parameter space. For exam-
ple, in certain cases, the transition between regular and chaotic
states is achieved by a period-doubling cascade. The isospike dia-
grams reveal the existence of significative differences in the dynam-
ical behavior of the system when varying the different parameters.
Indeed, when the applied fields hx and hz are varied, the evolu-
tion of the time series is different from the evolution produced
by the variation of the anisotropy coefficients βx and βz. Further-
more, we can distinguish shrimp shaped topological structures with
inner parts that may or may not present different periodicities. This
fact is of great importance due to the numerous reports mention-
ing these structures in different dynamical systems.15,21,25,71 Although
there are many studies concerning chaos in magnetic systems, we
want to emphasize that the understanding and characterization of
the periodicity windows is of great relevance.

SUPPLEMENTARY MATERIAL

See the supplementary material for the complementary infor-
mation concerning LLE and isospike phase diagrams as a function
of � and hx for the low-frequency regime and to explore the effect
in more detail of the initial conditions.
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