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We discuss the issues of controlling and synchronizing continuous space extended systems in
the case of two bidirectionally coupled fields, each one obeying one-dimensional CGL. When
the two equations are identical, control and synchronization are achieved by means of a finite
number of local tiny perturbations, selected by an adaptive technique. We address the problem
of the minimum number of local perturbations needed to realize control and synchronization.
When the two equations are nonidentical, we show how to induce the appearance of different
kinds of synchronized states, depending on the difference in the uncoupled dynamical regimes
of the considered fields. Finally, we discuss the role of space-time defects in mediating the
process leading to perfect synchronization between the two systems.

1. Introduction

In the last decade, control and synchronization of
temporal chaos have attracted a noticeable interest
within the scientific community [Boccaletti et al.,
2000]. In both cases, a dynamics is conveniently
disturbed, in order to force the appearance of a
goal behavior ¢(t) compatible with the natural
evolution of the system. In the former case, the
goal dynamics is chosen to be one of the unsta-
ble periodic orbits embedded within the chaotic
attractor [Auerbach et al., 1987], in the latter
case it corresponds to the dynamics of another
chaotic system with the aim of producing a collec-
tive dynamical evolution, which is usually called a
synchronized state.

Since the first proposals for control [Ott et al.,
1990] and synchronization [Pecora & Carroll, 1990]

of chaos, many other approaches have been sug-
gested for chaos control [Pyragas, 1992; Boccaletti
& Arecchi, 1995], while, the concept of synchro-
nization has evolved to that of phase synchroniza-
tion [Rosenblum et al., 1996], lag synchronization
[Rosenblum et al., 1997|, generalized synchroniza-
tion [Rulkov et al., 1995; Kocarev & Parlitz, 1996,
intermittent lag synchronization [Rosenblum et al.,
1997: Boccaletti & Valladares, 2000], imperfect
phase synchronization (IPS) [Zaks et al., 1999],
and almost synchronization (AS) [Femat & Solis-
Perales, 1999]. The transition between different
types of synchronization processes has been exten-
sively studied in a pair of symmetrically coupled
chaotic oscillators [Rosenblum et al., 1997; Rosa
et al., 1998]. On the other hand, the control of chaos
has been shown to be effective even in the case of de-
layed dynamical systems [Boccaletti et al., 1997a],
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by the use of the adaptive technique [Boccaletti &
Arecchi, 1995|.

The huge body of literature devoted to these
issues is justified by the large interest that they
have in practical applications, such as communi-
cating with chaos [Hayes et al., 1994|, secure com-

munication processes [Cuomo & Oppenheim, 1993;
Gershenfeld & Grinstein, 1995; Kocarev & Parlitz,

1995; Peng et al., 1996; Boccaletti et al., 1997c], and
experimental control of chaos in many areas such
as e.g. chemistry |[Petrov et al., 1993], laser physics
[Roy et al., 1992; Meucci et al., 1994; Meucci et al.,
1996/, electronic circuits [Hunt, 1991], and mechani-
cal systems [Ditto et al., 1990]. Furthermore, exper-
imental verifications of chaos synchronization have
been offered e.g. in the cardiorespiratory system
[Schafer et al., 1998|, in the human brain [Tass
et al., 1998], in the cells of paddlefish [Neiman
et al., 1999] and in communication with chaotic
lasers [Van Wiggeren & Roy, 1998].

Only recently, control mechanisms have been
investigated in space extended systems. After
few preliminary attempts [Aranson et al., 1994] to
control spatiotemporal chaos, attention has been
directed to the control of two-dimensional patterns
Lu et al., 1996; Martin et al., 1996], or of coupled
map lattices |[Parmananda et al., 1997a; Grigoriev
et al., 1997], or of particular model equations,
such as the Complex Ginzburg-Landau Equation
‘Montagne & Colet, 1997] and the Swift Hohenberg
Equation for lasers [Bleich et al., 1997; Hochheiser
et al., 1997]. Furthermore, synchronization has
been proved in extended systems with unidirec-
tional (drive-response) configuration [Parmananda,
1997b].

However, while for concentrated systems, the
different proposed techniques have easily found
experimental verifications, in the extended case
experimental counterparts of the large body of
theoretical proposals [Aranson et al., 1994; Lu
et al., 1996; Martin et al., 1996; Parmananda et al.,
1997a; Grigoriev et al., 1997; Montagne & Colet,
1997; Bleich et al., 1997; Hochheiser et al., 1997;
Parmananda, 1997b]| are not yet available. We ar-
gue that the main reason for this lack of experi-
ments is due to the fact that almost all proposed
methods used space-extended perturbations, that
is perturbations which have to be applied at any
point of the system. The few examples of global
control [Parmananda et al., 1997al, or control with
a finite number of local perturbations [Grigoriev
et al., 1997], were so far limited to discrete sys-

tems, i.e. to coupled map lattices. The most rele-
vant problem in passing from concentrated to space
extended continuous systems arises, indeed, when
considering that an extended continuous system is
an intrinsically infinite dimensional system, and it is
still unclear whether the perturbation itself should
be extended in space, i.e. should affect all points
of the considered system. This last requirement
would be, indeed, very difficult to realize experi-
mentally, and would constitute an objective limita-
tion for experimental implementations.

Further in this Review, we discuss how to
overcome the above difficulties in the case of a
bidirectional coupling between two space extended
fields obeying one-dimensional CGL, for both iden-
tical (Sec. 2) and nonidentical (Sec. 3) CGL. In
the former case we will show that control and syn-
chronization can be achieved by means of a finite
number of local tiny perturbations, selected by an
adaptive technique and we address the problem of
the minimum number of local perturbations needed
to warrant the occurrence of the two processes. In
the latter case, we will show that different kinds of
synchronized states may be induced depending on
the difference in the uncoupled dynamical regimes
of the considered fields, and we will discuss the
role of space-time defects in mediating the process
leading to perfect synchronization between the two
systems.

2. Identical Systems

2.1. Model equation

In this first part, we will show that both control
and synchronization can be achieved in a continu-
ous extended system by means of a finite number
of local controllers, i.e. by a finite number of non-
extended perturbations, each one affecting a differ-
ent point in the system. The minimum number of
controllers will be derived, and the robustness of
both processes against the presence of noise will be
verified.

For the sake of exemplification, we will refer
to the one-dimensional Complex Ginzburg—Landau

equation (CGL)

A=A+ (1 +ip)Aze — (1 +ip2)|APA, (1)
where A(z, t) = p(z, t)e?®Y is a complex field
of amplitude p and phase 1, dot denotes temporal
derivative, A, stays for the second derivative of A
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with respect to the space variable 0 < z < L, L rep-
resents the system length, and uq, po are suitable
real control parameters. The boundary conditions
are chosen to be periodic.

Equation (1) describes the universal dynamical
features of an extended system close to a Hopf bifur-
cation [Cross & Hohenberg, 1993], and it has been
used to model many different situations in laser
physics [Coullet et al., 1989], fluid dynamics [Kolod-
ner et al., 1995], chemical turbulence [Kuramoto &
Koga, 1981}, bluff body wakes [Leweke & Provansal,
1994|, etc.

Different chaotic regimes can be identified in
Eq. (1) in different regions of the parameter space
(f1, p2) [Shraiman et al., 1992; Chate, 1994].
particular, Eq. (1) has plane wave solutions of the

type
A= VT=

where —1 < q¢ < 1, ¢ being the wavenumber in
Fourier space, and the dispersion relation is

qm—l—wt) (2)

= —pg — (1 — p2)q*. (3)

When pipo > —1, a critical value of the wave-

number ge = /(1 + pp2)/(2(1 + pd) + 1 + papio)
exists, and all the plane waves in the range —q. <
g < q. are linearly stable. The plane waves out-
side this wavenumber range are instead unstable
undergoing the so-called Eckhaus instability [Jani-
aud et al., 1992]. As the product ujpue approaches
—1 the critical wavenumber value vanishes, and
therefore all plane waves become unstable when
crossing from below the line pujus = —1 in the
parameter space, which is called Benjamin-Feir or
Newell line. Above this line, Chate [1994] first
identified three different turbulent regimes, namely
phase turbulence (PT), amplitude turbulence (AT)
or defect turbulence, and bichaos. In particu-
lar, we will focus our attention on PT and AT,
since they have generated a special interest in the
scientific community [Sakaguchi, 1990; Egolf &
Greenside, 1994; Montagne et al., 1996; Torcini,
1996; van Hecke, 1998].

PT is the dynamical regime characterized by
a chaotic behavior of A(z, t) essentially dominated
by the dynamics of the phase 1 (z, t), whereas the
amplitude p(x, t) changes smoothly, and it is al-
ways bounded away from zero. On the contrary, in
AT the amplitude dynamics becomes dominant over
the phase dynamics, and produces large amplitude
oscillations which can occasionally drive p(z, t) to

zero, thus inducing the appearance of a space-time
defect.

PT and AT are characterized by a spatial auto-
correlation function decaying exponentially, with a
spatial correlation length & smaller than the system
size L, that is,

C(z, 2') = (Az, )A*(¢/, t))y ~e € , (4

where (...); denotes average in time. In two spa-
tial dimensions it has been theoretically predicted
[Coullet et al., 1989] and experimentally verified
[Arecchi et al., 1993] that the defects have a dy-
namical role in mediating the shrinking process of
¢, thus in the passage from regular to turbulent
behavior.

Since each domain of size £ is space-correlated
in its dynamics, the main features of the space-time
chaotic evolution of the system can be captured by
considering a collection of N = int(L/£) + 1 un-
correlated domains, and a single local perturbation
within each domain should warrant the collapse of
A(z, t) onto any goal pattern g(z, t) compatible
with the natural evolution of the system.

In fact, we argue that the number of local
perturbations necessary to slave A(x, t) to a goal
pattern g(z, t) might be smaller than N, in virtue
of nonlinear constraints within the system, which
make each correlation domain interact with all the
others.

In the following, we first demonstrate that
the above sufficient condition holds for a judicious
choice of the local perturbations, and then we will
move to show that the necessary condition for the
control can, in fact, be obtained with a number of
local controllers smaller than N.

2.2. Adaptive control

Let us begin by setting u; = 2.1 and pp = —1.3
in Eq. (1) in order to enter the AT regime. In the
following, we will solve numerically Eq. (1) with
L = 64, periodic boundary conditions, and random
initial conditions. The numerical code is based on a
semi-implicit scheme in time with finite differences
in space. The precision of the code is first order in
time and second order in space. In all the simula-
tions we use a space discretization dr = 0.125 (512
mesh points) and a time step for the integration
dt = 0.001. For the above choices, the spatial cor-
relation length is £ = 4.39, corresponding roughly
to 35 points of the mesh (N = 17). Control of
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space-time chaos implies the emergence of some
unstable periodic pattern out from the AT regime.
Therefore, the goal pattern g(z, ) is represented
by any of the plane wave solutions (2), which are
unstable in AT.

In order to control the system to the desired
goal pattern, we add to the right-hand side of
Eq. (1) a perturbative term U(x, t) of the type

U(z,t) =0 for z # x;
Uﬂ?,tZUit fDI’IEZSUi

where 7 = 1, M and z; = 1 + (¢ — 1)v are the
positions of M local controllers, mutually separated
by a distance v (z;4.1 — z; = V).

As a first step of our analysis, we will use v = ¢
M = N), in order to show that a sufficient con-
dition for a robust control is that the number of
controllers equals the correlation length. After that,
we will show that control can be achieved also for
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Fig. 1.
downwards from 1000 to 1800 (u.t.).

v > €& (M < N), thus making our approach of some
help for practical experimental implementations.

The strength of the M perturbations U;
1 =1, M 1is selected by the following algorithm.
At each controller position z; and integration time
t,, the ith controller measures the distance 9;
between the actual dynamics A(z;, t,) and the goal
pattern g(z;, iy

51; G :AIi,tﬂ gmi,t - 0
and evaluates its local variation rates
5‘(tn)
A = lo . 7
) 5 0i(tn_1
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Space (horizontal)-time (vertical) plots of the real part of A (left) and the modulus of A (right). Time increases
The first 1000 time units corresponds to the transient before the system reaches

the chaotic (AT) domain starting from random initial conditions. The patterns have been coded in 256 gray levels (white

corresponds to maxima). The parameters are g1 = 2.1 and po

—1.3, dt = 0.001, L = 64, dz = 0.125. The control (o = 0.1,

Ko = 1) starts at T' = 1400 (indicated by an arrow). The goal dynamics is chosen to be the particular plane wave solution (2)
having ¢ = 0.589 (corresponding to six wavelengths for this system size). The associated frequency and amplitude are w = 0.12
and A, = 0.808. In these conditions, the control is reached after a very fast transient and with only M = 17 controllers.
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where

1 1
= — (1 — tanh(oA; (¢,
itﬂ 0

, o>0, Kg>0.

9

The algorithm of Eqs. (6)—(9) is an extension of
the adaptive algorithm introduced in |[Boccaletti
& Arecchi, 1995], and successfully applied also to
chaos synchronization [Boccaletti et al., 1997c|, tar-
geting of chaos [Boccaletti et al., 1997b], filtering
of noise from chaotic data sets [Boccaletti et al.,
1997d|, and control of delayed dynamical systems
Boccaletti et al., 1997a).

The algorithm is called adaptive insofar as the
strength of the perturbation in Eq. (8) depends
adaptively on the local dynamics of the system. In
particular, when A(x;, t,) naturally shadows the
goal pattern g(z;, t,), a temporal decreasing be-
havior of ¢;(t) is produced, which is reflected into
a negative A;(t) and a reduction of the weight fac-
tor K;(t) in Eq. (9). On the contrary, whenever
the dynamics tends to push the system away from

e
R
L a il L]

the goal pattern, this is reflected by a growth of
K;(t). In other words, the further (closer) the sys-
tem is to the goal pattern, the larger (smaller) is the
welght given to the perturbation. The limit ¢ — 0
of the above algorithm recovers the Pyragas’ con-
trol method of |[Pyragas, 1992], implying a constant
weight K in Eq. (9). The positive quantity o rep-
resents the sensitivity of the method, and it plays
a crucial role in assuring the smallness of the per-
turbations as well as the effectiveness of the control
[Boccaletti & Arecchi, 1995].

Figure 1 reports the control of one of the un-
stable plane waves (2) for ¢ = 0.1 and Ky = 1.
The control procedure implies the suppression of
the defects, until the controlled amplitude relaxes
to a constant value. The arrow indicates the in-
stant at which control is switched on.

Let us now discuss the robustness of the con-
trol against noise. For this purpose, besides the
control perturbation U(z, t), we add to the right-
hand side of Eq. (1) a Gaussian noise mw(z, t) with

Modulus

Fig. 2. Same as Fig. 1 with the addition of Gaussian noise with a standard deviation 0.01 x A,/+/2 to all points of the mesh
at each time step. This noise is added to both the real and imaginary parts of the field A(x, t). The trace of the M = 17

equispaced controllers is now visible on the modulus.
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Fig. 3. Plot of the transient time T} before achieving control

as a function of the number M of equidistantly spaced con-
trollers. Same parameters as in the caption of Fig. 1 u, = 2.1,
o = —1.3 AT regime. The proposed method fails for M < 8,
whereas a controller with double correlation length is enough
to achieve control.

zero average and delta correlated in space and time
((m(x, t))t = 0 and (w(z, t)n*(2’, t')) = ~vd(z —
z')o(t — t')). The results are shown in Fig. 2 for a
noise strength of 1% of the unperturbed dynamics
A. The control process still leads to the appearance
of the desired goal pattern for relatively high noise
strengths (up to 4%). The lower part of the right
picture shows that noise cancelation is effective only
at the controller points.

Finally, we now discuss the issue of the mini-
mum number of requested local perturbations. Fig-
ure 3 reports the transient time 7} needed to achieve
control of the plane wave of Fig. 1 versus M, show-
ing that 7; diverges to +00 for M < 8. Recalling
that L = 64 and £ = 4.39, so that N = 17, Fig. 3
actually tells us that control is possible, unless as-
sociated with a larger transient time, even with a
controller distance v ~ 2£, that is with a number
of controllers about one half the number of corre-
lation domains. This improvement suggests that
our adaptive method can overcome the difficulties
encountered so far for experimental implementa-
tions of control of space-time chaotic states.

2.3. Synchronization

In this section, we discuss the problem of chaos syn-
chronization. To this purpose, we consider two com-
plex fields A;(z, ) and As(z, t), each one obeying
Eq. (1) with the same parameters p; and pg as in
the above case. '1'he two fields evolve from different

random initial conditions, and therefore they pro-
duce two space and time unsynchronized AT dy-
namics. The algorithm of Eqgs. (6)—(9) is used in
order to select the perturbations at each controller
point x;, but now the goal dynamics for A;(z, t) is
As(x, t), and vice versa. In other words, the local
controllers symmetrically force each complex field
to collapse into the other one in particular space
positions. The results are summarized in Fig. 4, for
c = 0.1 and Ky = 1. The arrow indicates again the
instant at which the controllers become active. The
final synchronized state A;(x, t) = As(z, t) remains
amplitude turbulent, and the process determines a
complete synchronization of each space-time defect,
as shown by the equality of the amplitudes A; and
As.

It is important to point out that, while the pro-
posed control process crucially relies on the knowl-
edge of the unstable plane waves, the synchroniza-
tion procedure is independent of any knowledge of
the system. The local goal values for the two fields
can be indeed measured by the same controllers
at any time and at any controller location, thus
making the synchronization process directly imple-
mentable with no need of previous knowledge on
the system.

3. Nonidentical Systems

A natural question arises directly from the first
part of this work: Is it possible to realize all dif-
ferent kinds of synchronization features in the case
of a coupling between nonidentical extended sys-
tems? This problem has been only recently ad-
dressed [Boccaletti et al., 1999; Chate et al., 1999],
and, in this second part, we summarize the main
results reported by us in [Boccaletti et al., 1999,
presenting further analysis and a detailed discus-
sion for the emerging synchronization states.

3.1. The model system

Here again, we will refer to a pair of one-dimensional
fields A 2(z, t), each one obeying a CGL. The sys-
tem under study is

ALQ = Al}g + (1 -+ ’i&liz)aiﬂljg

— (1+1iB1,2)|A1,2|°A1,2 + (A2 — A12),
(10)

where Aja(z,t) = ppa(z, t)el¥12(@) are two
complex fields of amplitudes p; 2 and phases v 2
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Fig. 4. Synchronization of two identical systems A;(z, t) (left column) and Ax(z, t) both in the AT regime (same parameters
as in Fig. 1). The right columns display the differences between the two patterns (upper: real parts, lower: moduli). The time
runs from 1000 to 1600 (u.t) and the synchronization starts at 7' = 1300 (indicated by an arrow).

respectively, aj 2, 01 2 are suitable real parameters,
and ¢ is the strength of the symmetric coupling.

It is important to remark that we deal here
with nonidentical systems (a; # asg, 81 # B2), SO
that two different cases must be taken into account,
namely the small and large parameter mismatch
cases. For small parameter mismatches, the sys-
tems are prepared in the same dynamical regime,
e.g. both in PT or in AT. On the contrary, for large

parameter mismatches, ay, as, (51, (B2 are chosen so
as one system is in the PT regime, while the other
is in the AT regime.

3.2. ATI-AT case

Let us first consider the case of small parameter

mismatches, and select vy = ap = 2.1, 1 = —1.25,
By = —1.2 in Eq. (10) (both fields in AT). Figure 5
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(g)
Fig. 5.

(i)

AT-AT Case: Space (horizontal)-time (vertical) plots of (a,d, g) p1, (b,e,h) p2 and (c,f,i) —|p1 — p2|. a1 = a2 = 2.1,

B1 = —1.25, B2 = —1.2. Time increases downwards from 300 to 600 (u.t.). The first 300 time units (not plotted) corresponds
to the transient before the system reaches two independent chaotic (AT) states starting from two independent random initial
conditions; (a, b, ¢) correspond to £ = 0.05, (d, e, f) to € = 0.09, (g,h,i) to e = 0.15. In (c,f,i) the white regions correspond to

|p1 — p2| =0, i.e. indicate complete synchronization.

reports the space-time plots of p; [Figs. 5(a), 5(d),
5(g)], ps [Figs. 5(b), 5(e), 5(h)] o1 — pa [Figs. 5(c),
5(f), 5(i)] for e = 0.05 [Figs. 5(a)-5(c)|, € = 0.09
Figs. 5(d)-5(f)] and € = 0.15 [Figs. 5(g)-5(i)]. In
all cases, the patterns come out from a codification
into a 256 gray levels scale and the dark lines in
Figs. 5(a), 5(b), 5(d), 5(e), 5(g), 5(h)] trace the po-
sitions of the space-time defects. The simulations of
Eq. (10) have been performed with L = 64, periodic
boundary conditions and random initial conditions.

From Fig. 5 one can infer the existence of a
ecradual passage from a nonsynchronized AT state
[Figs. 5(a)-5(c) to a completely synchronized AT
state |[Figs. 5(g)-5(i)], through an intermediate
state |Figs. 5(d)-5(f)] wherein partial synchroniza-
tion is built.

At variance with what happens in concentrated
systems, here the transition from nonsynchronized

to synchronized states is not associated with the
presence of an intermediate PS regime. Indeed,
Fig. 6 reports the measurements of (Ap) = (|p1 —
p2|) and (Avy) = (|11 —12|) versus € ((...) stays for

an averaging in both time and space), and shows
that (Ap)(e) and (Avy)(g) gradually decay at once.
The scenario is therefore consistent with what has
been already observed for small parameter mis-
matches in chemical models [Parmananda, 1997Db].

3.3. PT-PT case

The above scenario does not change qualitatively
when we consider a coupling between two initial P'T

states. Let us choose a7 = ay = 2.1, 5; = —0.75,
By = —0.83 in Eq. (10) (both fields in PT), and, by
gradually increasing e, perform simulations with the
same system size, boundary conditions and initial
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Fig. 6. AT-AT Case: Indicators of modulus (e) and phase
(M) synchronization. Space-time average of the difference
between amplitudes and phases of the two fields versus the
coupling € (see definitions in the text). Same parameters as
in the caption of Fig. 5. The left (right) vertical axis reports

the (Ap)((A)) scale.

conditions as above. The results are shown in Fig. 7,
where we report p; [Figs. 7(a), 7(d)], p2 [Figs. 7(b),
7(e)] |p1 — p2| [Figs. 7(c), 7(f)] for two values of the
coupling parameter ¢ = 0.02 [Figs. 7(a)-7(c)] and
e = 0.04 [Figs. 7(d)-7(f)]. Here again, the system
passes from an unsynchronized P71 state at small
couplings to a completely synchronized PT state. In

this case, since defects are not present the synchro-
nization emerges for a smaller coupling strength.

3.4. Large parameter mismatch

A much richer scenario is observed in the case
of large parameter mismatches. Let us select in
’Tﬁq (10) 1 = 9 = 21, /31 == "1.2, }32 = —0.83.
This implies that the field A; is evolving in AT,
while the field A, is evolving in PT. In Fig. 8
we report the patterns arising from the space-time
representations of p; [Figs. 8(a), 8(d), 8(g)|, p
[Figs. 8(b), 8(e), 8(h)] |p1 —p2| [Figs. 8(c), 8(f), 8(i)]
for e = 0.03 [Figs. 8(a)-8(c)], € = 0.14 [Figs. 8(d)-
8(f)] and £ = 0.19 [Figs. 8(g)-8(i)].

At small coupling strengths, the two systems
do not synchronize, and they hold in their respec-
tive regimes [Figs. 8(a)-8(c)|. At large coupling
strengths, the two systems reach a CS regime, which
is realized in PT [Figs. 8(g)-8(i)]. The final synchro-
nized state is space-time chaotic, but the synchro-
nization process is associated with the suppression
of all defects, which were initially present in A;.

However, the most interesting regime is the
intermediate one [Figs. 8(d)-8(f)], with the two
systems giving rise to a partial synchronization
phenomenon realized in an AT regime.

In Fig. 9 we report the plots of (Ap) and (AvY)
versus €. In contrast with Fig. 6, Fig. 9 highlights

(£)

Fig. 7. PT-PT Case: Space (horizontal)-time (vertical) plots of (a,d) p1, (b,e) p2, and (c,f) —|p1 — p2|. a1 = a2z = 2.1,
B; = —0.75, B2 = —0.83. Other parameters, initial conditions and boundary conditions as in Fig. 5. Same stipulations as in

Fig. 5; (a—c) correspond to € = 0.02, (d—f) to € = 0.04.




2724 J. Bragard et al.

(8)

Fig. 8.

(1)

AT-PT Case: Space (horizontal)-time (vertical) plots of (a,d, g) p1, (b, e, h) p2, and (¢, f,i) —|p1 —p=2|. a1 = az = 2.1,

B = —1.2, B2 = —0.83. Other parameters, initial conditions and boundary conditions as in Figs. 5 and 7. Same stipulations
as in Figs. 5 and 7; (a—) correspond to £ = 0.03, (d-f) to € = 0.14, (g-1) to e = 0.19.

the presence of a wide range of ¢ (0.1 < ¢ <
0.16) for which amplitude synchronization is not yet
reached [see Fig. 8(f)], but the average phase dis-
tance converges to a constant value. In this situa-
tion, one expects the amplitudes of the two fields to
be uncorrelated, while the phases already strongly
coupled.

An heuristic argument for such a phenomenon
can be offered. The natural evolution of A; isin AT,
that is showing the presence of many space-time de-
fects. Defects are localized points wherein the am-
plitude of the field vanishes. As a consequence, in
each one of them, the phase 1; shows a singularity.
AT allows flexibility in the amplitude dynamics, but
the variations of the phase are not flexible, since
they are substantially determined by the local am-
plitude variations. On the contrary, A, would nat-
urally evolve in PT, that is with a dominant phase
dynamics. The phase 19 is not naturally bounded,

and its oscillations are allowed by the evolution of
the uncoupled systems. For 0.1 < ¢ < 0.16, a strong
correlation is built in the phases. There, 11 and 5
converge in average (apart from a constant). This
is possible only when 1)y locally adjusts on ;. The
relevant consequence of this process is the introduc-
tion of many defects in the field Ay, which would
be instead free of them in the uncoupled state.

As a conclusion of this part, we can state that,
while for small parameter mismatches one observes
a passage from no synchronized to completely syn-
chronized states, for large parameter mismatches
this transition is mediated by a state which is sim-
ilar to what was called phase synchronization for
concentrated systems. In the former case, the re-
sulting space-time synchronized state is not quali-
tatively different from the unsynchronized one, in
the latter case, the state of the system resulting
from the synchronization process may substantially
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Fig. 9. AT-PT Case: Indicators of modulus (e) and phase

() synchronization (same stipulations as in Fig. 6). Param-
eters, initial and boundary conditions as in the caption of

Fig. 8. Note the phase plateau for 0.1 < ¢ < 0.16.

200 1
N,
100
G 7 i - i - I . 9
0 0.05 0.1 0.15 0.2 0.25
E
Fig. 10. AT-PT Case: Total number of phase defects N4 as

a function of the coupling strength ¢ for A, (o) and A, (M).
Same parameters, initial and boundary conditions as in the
caption of Fig. 8.

differ from that present with no coupling, and it is
mainly dictated by the synchronization process of
the space-time defects. The presence of phase syn-
chronization in CGL has been recently offered also

in the case of a unidirectional coupling [Junge &
Parlitz, 2000].

3.5. Quantitative indicators for
synchronization

Now we move to the issue of quantitatively con-
firming the above qualitative picture for the large

parameter mismatch case. IFor this purpose we
measure the total number of phase defects Ny as
a function of € for ¢y = ay = 2.1, 51 = —1.2,
By = —0.83. Figure 10 reports N4 versus ¢ for
A, (o) and A, (M). At small coupling strengths
(0 < ¢ < 0.1) the two fields evolve in an un-
synchronized manner. At intermediate e values
(0.1 < € < 0.16) it appears evident a process of
defect injection into the field As up to the point
(¢ ~ 0.16) where both fields show the same defect
number. Finally, when all defects have been syn-
chronized, the system begins to reach a CS state,
which is realized in PT, implying the absence of
phase defects in both fields (as it is evident from
Fig. 10).

The above indicator is a global indicator, that is
an average on both space and time. In order to dis-
tinguish whether this synchronization phenomenon
is a temporal phenomenon, a spatial phenomenon
or a spatiotemporal phenomenon, we have to ana-
lyze separately the space and time features of the
synchronized pattern. This can be done by moving
to the Fourier space (x — k,t — ) and consider-
ing ﬁl,g(k,, (1), that is the Fourier transforms of the
flelds Aj o(z, t). For each € value, let us consider
the following mean quantities

L 1 +km  +Om
g) =
(k)1.2(€) N1 2 /hkm /—Qm

x k| Ay 2(k, Q)|2dkdQ,

(Q)1,2(¢) = N12/+k /+Q

x Q| A1 2(k, Q)[2dkdS,

where 0,, = (N7)/(t:), km = (Nw)(L), N is the
total number of discrete data considered for the
Fourier transform, ¢; is the total running time of the
simulation, and the normalization constants IVj o
are defined by

(11)

thm O
Ny = / [ Ak Q) Pakan. (12)

Notice that both 2, and k,, depend on the partic-
ular discretization used in the simulations. The re-
sults show that (k) 2(e) ~ 0 independently on ¢, as
one should have expected considering the fact that
turbulent regimes in the CGL come out from large
wavelength instabilities. On the contrary, the quan-
tities (€)1 o are always bounded away from zero and
strongly depend on the coupling strength. Figure 11
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Fig. 11. AT-PT Case: (2); (H) and (Q)2 (e) as functions

of ¢ (see text for definitions). a; =az =2.1, B; = —1.2,
B2 = —0.83. Other parameters, initial and boundary condi-
tions as in the caption of Fig. 8.
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Fig. 12.

reports (€2); (M) and (£2)2 (e) as a function of € for
1 = Gy = 2.1, /@1 — —*1.21 ﬁg = —0.83. While
the field A; appears to be robust in the variation of
its temporal frequency, the field A shows a large
variation in its frequency as a function of the cou-
pling, thus confirming our heuristic argument about
the flexibility of As during the synchronization
process.

This suggests to consider for |p; — p2| and
1201 — Y2| only spatial averages, as opposed to what
we have considered in Figs. 6 and 9 and to inves-
tigate the temporal evolution of such new averaged
differences at different & values.

Let us then define (|p1 — p2|)z (), (|1 —v2|)x(¢)
the spatial averages of the differences in amplitudes
and phases of the two fields (now (...), indicates
an averaging only along the spatial variable z). In

900 920 940 960 980 1000
TIME

(b)

45*”‘“*"1 “‘

2 -
1!, U uuuy \JJ.JL_J:

900 920 940 960 980 1000
TIME

(d)

AT-PT Case: (|p1 — p2|)z (a,c) and (|31 — ¥2|)z (b,d) versus time (see text for definitions) for (a,b) € = 0.14 and

(c,d) e =0.17. a1 = a2 = 2.1, B1 = —1.2, B2 = —0.83. Other parameters, initial and boundary conditions as in the caption

of Fig. 8.




Control and Synchronization of Space Extended Dynamical Systems 2727

Fig. 12 we show how (|p1 — p2l|)o () [Figs. 12(a),
12(c)] and (Jtb1 —wa)a(t) [Figs. 12(b), 12(d)] evolve
in time for e = 0.14 [Figs. 12(a), 12(b)] and € = 0.17
[Figs. 12(c), 12(d)|, that is immediately before and
after the point € ~ 0.16 for which both fields show
the same defect number Ny (see Fig. 10). The tran-
sition to a completely synchronized state (occurring
for ¢ > 0.16) corresponds to the appearance of a
regular periodic behavior for the spatial average of
the difference in phase. Correspondingly, the fluc-
tuations of (|p; — p2|)2(f) are strongly washed out.
It is important to remark that, while Fig. 12 depicts
the behavior of the system close to the transition,
from Fig. 9 one can appreciate that the spatiotem-
poral average (A1) further decreases for increas-
ing € > 0.17. Therefore, a question arises on how
the temporal behavior of (|¥; — 1s|)z(t) accomo-
dates with the decreasing process of (Av), and on
whether the amplitude fluctuations of |1/ —12|) 2 (t)
decrease, eventually vanishing at very large ¢
values.

4. Discussion and Conclusions

We have discussed the emergence of synchronization
features in a pair of coupled nonidentical spatially
extended pattern forming systems, with reference to
the one-dimensional Ginzburg-Landau Equation,
that is referring to a general case of an extended
system undergoing an Hopf bifurcation. We have
distinguished three main cases, namely identical
systems, systems with a small parameter mismatch
and systems with a large parameter mismatch.

For identical systems, control and synchroniza-
tion can be achieved by means of a limited number
of local controllers, whose distance in space may
overcome the spatial autocorrelation length.

For systems displaying small parameter mis-
matches, the coupling induces a gradual transition
toward a completely synchronized state, which is
realized in the same dynamical regime recovered by
the uncoupled systems.

Finally, for systems displaying large param-
eter mismatches, high coupling strengths induce
a complete synchronized state, which is realized
in phase turbulence, while intermediate coupling
strengths realize partial synchronization features.
The introduction of suitable indicators for analyzing
space and time effects highlights that the transition
between the two above synchronization states is
associated with the emergence of a periodic tem-

poral behavior for the space average on the phase
difference.
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