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A derivation is given of the amplitude equations governing pattern formation in sur-
face tension gradient-driven Bénard–Marangoni convection. The amplitude equations
are obtained from the continuity, the Navier–Stokes and the Fourier equations in the
Boussinesq approximation neglecting surface deformation and buoyancy. The system
is a shallow liquid layer heated from below, confined below by a rigid plane and
above with a free surface whose surface tension linearly depends on temperature. The
amplitude equations of the convective modes are equations of the Ginzburg–Landau
type with resonant advective non-variational terms. Generally, and in agreement with
experiment, above threshold solutions of the equations correspond to an hexago-
nal convective structure in which the fluid rises in the centre of the cells. We also
analytically study the dynamics of pattern formation leading not only to hexagons
but also to squares or rolls depending on the various dimensionless parameters like
Prandtl number, and the Marangoni and Biot numbers at the boundaries. We show
that a transition from an hexagonal structure to a square pattern is possible. We
also determine conditions for alternating, oscillatory transition between hexagons and
rolls. Moreover, we also show that as the system of these amplitude equations is
non-variational the asymptotic behaviour (t → ∞) may not correspond to a steady
convective pattern. Finally, we have determined the Eckhaus band for hexagonal pat-
terns and we show that the non-variational terms in the amplitude equations enlarge
this band of allowable modes. The analytical results have been checked by numerical
integration of the amplitude equations in a square container. Like in experiments,
numerics shows the emergence of different hexagons, squares and rolls according to
values given to the parameters of the system.

1. Introduction
A motionless thin fluid layer heated from below and open to the ambient air is un-

stable if the vertical temperature gradient overcomes a threshold value (Koschmieder
1993). Above threshold, the liquid layer undergoes a transition from the conduction
motionless state to a convective state in which the fluid motion generally exhibits a
patterned structure with e.g. hexagonal, roll or square cells. The cause of this insta-
bility is the heat-induced gradient in the interfacial tension σ. Indeed, surface tension
varies with temperature and or concentration of a solute, hence creating surface
stresses and flow (Marangoni effect).

Systematic experimental research on patterned convection began with H. Bénard
(1900). Bénard discovered the hexagonal convection cells which are now commonly
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referred to as Bénard cells (Koschmieder 1993; Velarde & Normand 1980). The
circulation of the fluid in the hexagonal cells is generally upwards in the centre
(up-hexagons) and downwards along the rim.

Although Bénard became aware of the role of surface tension and surface tension
gradients in his experiments, he failed to recognize its key role consequently. It took
five decades to unambiguously assess experimentally that indeed the surface tension
gradient rather than buoyancy (Rayleigh 1916) was the cause of Bénard cells in thin
liquid films (Block 1956; Koschmieder 1993). Pearson (1958) was the first author to
provide a theory explaining the effects of the surface tension gradients on Bénard
convection. He studied the stability of a liquid layer open to air and uniformly heated
from below. According to Pearson’s theory for a critical value of the Marangoni
number, which is a dimensionless measure of the surface tension variation, the layer
displays a short-wave pattern of stationary cellular convection.

Since these pioneering works many publications have been devoted to this surface-
tension-gradient-driven instability, in both experimental and theoretical directions.
Several reviews exist (Normand, Pomeau & Velarde 1977; Ostrach 1982; Davis
1987) where the authors discuss the role of buoyancy and surface tension gradients in
triggering convective instability. More recently a review article by Cross & Hohenberg
(1993) was devoted to non-equilibrium pattern formation, with quite a short section
dealing with genuine Bénard cells, i.e. Bénard–Marangoni convection (Koschmieder
1993).

To cope with the analytical difficulties of Navier–Stokes and Fourier equations, one
has the alternative of numerical integration, albeit in limiting cases (like with fluids
having infinite Prandtl number) as done e.g. by Thess & Orszag (1995), or to develop
a weakly nonlinear approach around instability thresholds. Perturbative methods
were first applied to Bénard–Marangoni convection by Scanlon & Segel (1967) who
used very drastic albeit relevant simplifications, i.e. infinite Prandtl number and semi-
infinite liquid layer. They predicted an hexagonal convective pattern in favour of rolls
above the onset of instability. They also showed that the hexagonal structure may
be stable for subcritical values of the Marangoni number. In parallel, experimental
investigations increased our knowledge of the problem. For instance, following the
earlier work by Koschmieder, Cerisier et al. (1987) and Pampaloni et al. (1992) studied
the relative stability of rolls and hexagons, and concluded that hexagons give way
to rolls when the depth of the fluid is increased (increasing the buoyancy versus the
surface tension effects). Another result of Lebon and collaborators is the prediction
of a transition from hexagons to rolls for high Marangoni numbers (Cloot & Lebon
1984; Bragard & Lebon 1993). This has not yet been observed in experiments. We
shall come back to this point later. Their theory also predicts the existence of a range
where both hexagons and roll patterns can coexist. Using group theory, Golubitsky,
Swift & Knobloch (1984) have shown the importance of the reflection symmetry in
the horizontal midplane in the selection of convective planforms. A recent experiment
(Schatz et al. 1995) has shown hysteretic behaviour occurring in Bénard–Marangoni
convection, to be expected in view of the discrepancy existing between energy and
linear stability approaches to the problem (Davis 1969; Davis & Homsy 1980; Castillo
& Velarde 1982). The hysteresis corresponds to a 3% subcritical range where both
a motionless state and convective hexagonal motion can coexist. Schatz et al. found
a critical Marangoni number of 84 very close to the predicted value of Pearson
theory (i.e. Mac = 79.6). Another recent experiment (Nitschke & Thess 1995) shows a
secondary instability from an hexagonal to a square pattern. The experimental set-up
differs from that used by Bénard because the gas layer at the upper surface is very
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thin and consequently affects in a rather drastic way the thermal boundary condition
at the open surface, a point earlier mentioned by Koschmieder (1993).

We have derived the amplitude equation for the modes of convection beyond
threshold, taking account of the dependence of the coefficients of these equations
on various dimensionless parameters of the system, and in particular more than a
single thermal boundary condition, through a varying, appropriate Biot number (to
be defined below).

The basic equations are presented in §2. The linearized problem is studied in §3.
Amplitude equations for the hexagonal structure are derived in §4 while in §5 the
amplitude equations refer to two modes forming an arbitrary angle. In §6 we first
recall results about the relative stability of the different possible patterns of hexagons,
rolls and squares and then discuss the influence of variations of the coefficients of the
amplitude equations with the dimensionless parameters. In §7 we sketch the method
used to integrate the amplitude equations and provide a few significant results. In
§8 the Eckhaus instability is studied in the framework of our amplitude equations.
Finally, §9 is devoted to conclusions and comments on still open questions.

2. Equations and dimensionless parameters
We consider a thin liquid layer of infinite horizontal extent, confined below by

a rigid plane and open above to the ambient air, with a surface whose surface
tension linearly varies with the temperature. The fluid is heated from below. If the
layer is shallow enough or the experiment is done in a reduced gravity facility we
may disregard buoyancy. As we shall also disregard the open surface deformation,
gravity is then completely neglected. Moreover, the governing equations of the liquid
layer (continuity, Navier–Stokes and Fourier equations) are taken in the Boussinesq
approximation, hence density and other physical properties of the system are taken
constant (kinematic viscosity ν, heat diffusivity κ and thermal capacity Cp). This leads
to the following set of equations for the mass, momentum and energy:

∇ · v = 0, (2.1)

∂v

∂t
+ (v · ∇)v = −1

ρ
∇p+ ν∇2v, (2.2)

∂T

∂t
+ v · ∇T = κ∇2T . (2.3)

The boundary conditions on the velocity and temperature fields at the bottom plate
are

v = 0, (2.4)

∂zT − Bi b T = constant, (2.5)

while at the upper free surface the corresponding conditions are

w = 0, (2.6)

∂xσ = µ∂zu, (2.7)

∂yσ = µ∂zv, (2.8)

∂zT + Bi t T = constant, (2.9)

where µ is the dynamic viscosity of the fluid. The Biot number Bi parameterizes
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the heat transfer at the boundaries. An approximate formula to evaluate Bi t (the
superscript t refers to the top of the liquid layer) is

Bi t ≈ λair

λ

k

tanh kdair
, (2.10)

where λair and λ are the thermal conductivities of the air and liquid, respectively,
k is the dimensionless wavenumber and dair is the ratio of the thickness of the
air layer to that of the liquid layer (Normand et al. 1977). Taking the numerical
values corresponding to the recent experiment by Nitschke & Thess (1995), we
have λoil = 0.14W m−1 K−1 λair = 0.026W m−1 K−1. With the choice of k = 2 we
get Bi t ≈ 0.8 (note that to get the really correct value, we should iterate because
k = k(Bi t)). This value is different from the usual value of Bi t = 0 taken into account
for theories and also for experiments with a thick upper air layer. Actually, if we take
dair → ∞ in (2.10) for silicone oil open to air, we get that Bi t ≈ 0.38 (which is the
most common situation in experiments). In the two extreme, opposite cases of Bi = 0
and Bi →∞ we have, respectively, the Neumann condition (poor conductor) and the
Dirichlet condition (good conductor). The choice Bi t ≈ 0; Bi b → ∞ (the superscript
b refers to the bottom of the liquid layer) is called the Pearson condition as he first
studied this case, which strictly speaking does not correspond to the experiments by
Bénard (1900) and by Koschmieder (1993). In the following, we treat the problem
without any assumption on the values of Biot numbers.

The assumption of an undeformed open surface corresponds to the limit of strong
surface tension. The validity of this assumption is a subtle question (Davis 1987; Hadji
1996) but for a vanishing capillary number, except in the long-wave limit k → 0, we
can assume with no loss of generality a flat interface (for further discussion on the
generally negligible role played by the deformation of the open surface see Davis &
Homsy (1980) and Castillo & Velarde (1982)). For a 1 mm deep silicone oil layer, the
capillary number takes the value

Ca =
µκ

σ0d
= 5.6× 10−4. (2.11)

In shallow layers, non-negligible deformability may experimentally bring effects of
variable depth along the layer. Under such conditions dry spots may appear in the
layer and the possibility also exists for coexistence of hexagons, appearing in the
shallower parts, with rolls in the deeper ones (VanHook et al. 1995; Schatz et al.
1995). A similar situation may also occur if the Biot number is non-uniform along
the solid support or along the open surface. Neither of these two possibilities is
considered here.

Applying twice the curl to the momentum equations and using the continuity
equation, we get in dimensionless form the following set of equations:

∇4w = Pr−1
[
∂t∇2w + ∇2

1N(w)− ∂2
xzN(u)− ∂2

yzN(v)
]
, (2.12)

∇2
(
∇2

1u+ ∂2
xzw
)

= Pr−1
[
∂t
(
∇2

1u+ ∂2
xzw
)

+ ∂2
yyN(u)− ∂2

xyN(v)
]
, (2.13)

∇2
(
∇2

1v + ∂2
yzw
)

= Pr−1
[
∂t
(
∇2

1v + ∂2
yzw
)

+ ∂2
xxN(v)− ∂2

xyN(u)
]
, (2.14)

with N(.) = (v · ∇)(.) and ∇2
1 = ∂2

xx + ∂2
yy . Pr = ν/κ is the Prandtl number.
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3. Linear stability analysis
To linearize the equations (2.1–2.3) we split the variables (like for example the

temperature) into a reference profile and an infinitesimal disturbance, called T ′. We
have

T = Tref + T ′. (3.1)

Then as the horizontal extent is taken infinite we separate the variables, using a
Fourier representation in the horizontal plane (x, y). Expecting no confusion in the
reader we omit the prime, hence the disturbance becomes (for the temperature):

T = T (z) exp(ik · r) (3.2)

where k = (kx, ky) is the horizontal wavenumber of modulus k, and r = (x, y).
Although long ago Davis (1969) pointed out that an energy method did not provide
the same result as a linear stability analysis, in view of what is known both numerically
(Vidal & Acrivos 1966) and experimentally, we assume the exchange of stability to
simplify the theory. Thus, eliminating the time-dependence and using the Fourier
modes in the equations and in the boundary conditions, the linearized eigenvalue
problem is (

D2 − k2
)2
W (z) = 0, (3.3)(

D2 − k2
)
T (z) +W (z) = 0, (3.4)

where D denotes a derivative with respect to z. The corresponding boundary condi-
tions are: at z = 0

W = 0; DW = 0; DT − Bi bT = 0, (3.5)

and at z = 1

W = 0; D2W + k2MaT = 0; DT + Bi tT = 0, (3.6)

where

Ma =
−(∂σ/∂T )∆Th

µκ

is the Marangoni number.
The eigenfunctions W,T and the eigenvalue Ma are, respectively,

W (z) = C
[
{1 + (k coth k − 1)z} sinh kz − kz cosh kz

]
, (3.7)

T (z) = CT (z,Bi t,Bi b), (3.8)

Ma = Ma(k,Bi t,Bi b), (3.9)

where the constant C is fixed by the normalization∫ 1

0

W (z) dz = 1. (3.10)

For each pair (Bi t,Bi b) the minimum of the curve Ma = Ma(k) gives the critical
eigenvalue and corresponding wavenumber, respectively (Mac, kc). At threshold, the
perturbation of wavenumber kc starts to grow and the motionless liquid layer becomes
unstable as the linear stability analysis gives a sufficient condition for instability
(Pearson 1958). Above threshold, linear theory is unable to predict which planform
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Figure 1. Marginal stability curves, Ma vs. k. The solid line refers to the Pearson solution with
Bi t = 0 and Bi b → ∞. The dashed line corresponds to Bi t = 1 and Bi b → ∞, and the dotted line
corresponds to Bi t = 0 and Bi b = 0.01.

will be supercritically selected (hexagons, rolls, squares). Moreover, the planform may
also be affected by the heat transfer characteristics at the boundaries, hence by the
Biot numbers. Figure 1 gives the marginal stability curves for different values of Bi .
For vanishing Bi b the wavenumber tends to zero, hence the dimension of the cell
scales with the lateral extent of the system which is infinity. In this limiting case
our nonlinear analysis fails to be applicable, but other theories have dealt with it
(see e.g. Knobloch 1990; Shtilman & Sivashinsky 1991; Golovin, Nepomnyashchy
& Pismen 1995). In what follows, we shall study the system in the vicinity of finite,
non-vanishing kc, in order to find which structure is preferred when convection sets
in.

4. Amplitude equations for the hexagonal structure
Above the linear instability threshold, we look for evolution equations for the

amplitude and the phase of the convective state, i.e. for the complex amplitude of
the cellular pattern generated by the instability. We use the method of multiple scales
in the (x, y, z, t)-space. Then, starting from the basic equations (2.1)–(2.3), we obtain
a set of nonlinear partial differential equations that govern the amplitude of the
critical modes, hence describing slow modulations in space or time of the convective
pattern. The form of the amplitude equations can also be derived using symmetry
considerations, and the underlying ‘microscopic’ equations are needed only to evaluate
the coefficients in these amplitude equations. Another possible way to determine the
coefficients is to take advantage of knowledge from the experiments.

The method of multiple scales to determine the coefficients consists in separating
the time and space variables into fast and slow variables (see e.g. Newell & Whitehead
1969). We introduce a small parameter δ, which is the ratio between the fast and slow
spatial variables. Using this, we are able to separate the fast process of instability
from the slower evolution of convective structures and the dynamics of defects. As
δ becomes an ordering parameter, from the original nonlinear problem we get a
hierarchy of linear equations in powers of δ. The left-hand side of each of these
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equations is the same linear operator, hence the need of a solvability condition. We
require that the right-hand side of each equation in the hierarchy to be orthogonal
to the solution of the adjoint linear problem (Fredholm alternative). This condition
gives a constraint on the functional dependence of the amplitude, thus leading to the
sought amplitude equations.

Linear analysis gives the critical Marangoni number Mac for instability and deter-
mines the wavenumber kc of the unstable modes at threshold. However, the direction
of k is arbitrary; this degeneracy in orientation comes from the isotropy in the hori-
zontal, infinitely extended plane. There is another degeneracy related to the translation
invariance of the layer. These degeneracies do not result from the linear approxi-
mation but from symmetries of the chosen geometry, hence persist in the nonlinear
analysis. On the other hand, there is a pattern degeneracy that results from the linear
approximation. Indeed, any superposition of normal modes (e.g. for temperature)

T (r, z) = T (z)
∑
p

Ap exp(ik(p) · r) (4.1)

with |k(p)| = kc and where the Ap are constant coefficients, is a solution of the linear

problem. As T is real, we must impose the conditions A−p = Ap and k(−p) = −k(p),
but the number of non-zero Ap, i.e. the shape of the pattern, and their modulus, i.e.
the amplitude of the temperature perturbation, remain undetermined. To study the
hexagonal structure we start the analysis for three wavevectors having 120◦ angle
separation, thus forming a resonant triad. The problem is to determine how the
convection amplitude |Ap| saturates above threshold due to nonlinear interactions
(Malkus & Veronis 1958; Schlüter, Lortz & Busse 1965; Busse 1978). The solution
for the perturbations is (for example for the temperature)

T = δT1 + δ2T2 + δ3T3 + o(δ3). (4.2)

The scaling for the slow variables is

X = δx; Y = δy; τ = δ2t (4.3)

and for the fast variables

x̃ = x; ỹ = y; t̃ = t. (4.4)

Using these scalings the derivatives are

∂t = ∂t̃ + δ2∂τ, (4.5)

∇1x = ∇1x̃ + δ∇1X (4.6)

with ∇1X and ∇1x̃ denoting the horizontal gradient for the slow and fast variables,
respectively (in the following we omit the tilde in the notation). Note that we have
used a different scaling for slow time τ and slow space variables (X,Y ). In our case
the justification of this comes from the fact that the subcritical region (the region
where both the hexagonal pattern and the conductive state may coexist) is small.
This allows δ2 to be taken for the slow time scale rather than δ as done by other
authors (Kubstrup, Herrero & Pérez-Garcı́a 1996). This choice yields that nonlinear
saturation and spatial diffusion come together in the amplitude equations. A more
rigorous proof of the above scalings demands that we consider simultaneously a slow
time scale τ1 = δt as well as τ = δ2t and then proceed to an adiabatic elimination
over the small subcritical region. We shall not dwell on this delicate matter but use
the above defined scalings as a pragmatic procedure. The eigenvalue is expanded also
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using the smallness parameter δ

Ma = Mac + δMa (1) + δ2Ma (2). (4.7)

We insert all the above expressions in the basic equations and get successive
equations at each power in δ. At the first order in δ we recover the linear problem, as
expected. The function in the (x, y)-plane (which as earlier stated is not determined
by the linear analysis) is now chosen to satisfy the hexagonal symmetry. Three modes
with wave vector of modulus kc are chosen in the wave-space oriented at 120◦,
k(1) + k(2) + k(3) = 0. This choice fits well with the experimental evidence offered
by Bénard (1900) and by Koschmieder (1993). However, note that the combination
of a triad of modes not only leads to the hexagonal structure. It also permits a
roll structure. By introducing only three horizontal modes, we certainly simplify the
intricate dynamics of mode selection in the convective state. We shall address this
question later on by adding other critical modes in the planform function.

The solution at first order is

w1 = W (z)
[
A1(X,Y , τ) exp(ik(1) · r) + A2 exp(ik(2) · r) + A3 exp(ik(3) · r) + c.c.

]
,

T1 = T (z)
[
A1 exp(ik(1) · r) + A2 exp(ik(2) · r) + A3 exp(ik(3) · r) + c.c.

]
,

uH1 =
DW

k2
∇1x

[
A1 exp(ik(1) · r) + A2 exp(ik(2) · r) + A3 exp(ik(3) · r) + c.c.

]
,


(4.8)

where the subscript number corresponds to the order of the solution and the super-
script H denotes horizontal components of the velocity (u, v).

The next order is δ2. We have(
∇2

1x + ∂z2

)
T2 + w2 =

(
uH1 · ∇1x

)
T1 + w1∂zT1 − 2 (∇1x · ∇1X)T1, (4.9a)(

∇2
1x + ∂z2

)2
w2 = Pr−1

[
∇2

1x

{(
uH1 · ∇1x

)
w1 + w1∂zw1

}
−∂z∇1x ·

{(
uH1 · ∇1x

)
uH1 + w1∂zu

H
1

}]
− 4

(
∇2

1x + ∂zz
)

(∇1x · ∇1X)w1, (4.9b)(
∇2

1x + ∂z2

) (
∇2

1xu2 + ∂zxw2

)
= Pr−1

[
∂2
yy

{(
uH1 · ∇1x

)
u1 + w1∂zu1

}
−∂2

yx

{(
uH1 · ∇1x

)
v1 + w1∂zv1

}]
− 4∇2

1x (∇1x · ∇1X) u1

−2∂zz (∇1x · ∇1X) u1 − 2∂zx (∇1x · ∇1X)w1 − ∂zX
(
∇2

1x + ∂zz
)
w1. (4.9c)

The boundary conditions are unchanged except for that containing the Marangoni
number which now reads

∂zzw2 −Mac∇2
1xT2 = Ma (1)∇2

1xT1 + 2Mac (∇1x · ∇1X)T1. (4.10)

To solve equations (4.9), (4.10), we compute the right-hand side by introducing the
first-order solution; then we collect the terms in the right-hand side which have the
same wavenumber modulus. In this case the moduli found are the first harmonic
combination of the resonant triad, say (0, 1,

√
3, 2) ∗ k modes. If we separate variables,

we get a set of ordinary differential equations for each mode. The solution of these
equations is given in Appendix B.

The solvability condition is

〈u+, N(u)〉 = 0, (4.11)
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where the symbol 〈..〉 denotes the scalar product defined in Appendix A. Applying
the solvability condition to the set of equations corresponding to the k-mode, with
separation of variables we obtain

A∗2A
∗
3

[∫ 1

0

T+ {2WDT + TDW }dz

+Pr−1

∫ 1

0

W+
{

2DWD2W +WD3W − 3k2WDW
}

dz

]
−2i

(
k(1) · ∇1X

)
A1

[∫ 1

0

T+Tdz + 2

∫ 1

0

W+(D2W − k2W ) dz

]
+(DW+T )|z=1

[
2iMac

(
k(1) · ∇1X

)
A1 −Ma (1)k2A1

]
= 0. (4.12)

In the particular case of Bi t = 0 , Bi b →∞ (Pearson 1958), (4.12) reduces to[
−44.4

Pr
+ 195.4

]
A∗2A

∗
3 + 6.62Ma (1)A1 = 0. (4.13)

We have three such relations, one for each amplitude, obtained by circular permutation
of the indices. These relations among the amplitudes are used to integrate the second-
order equations (4.9), (4.10). Note that with non-zero Ma (1), we have hexagons
while rolls are allowed when Ma (1) vanishes. The next step is to write the third-
order equations (4.14), (4.15). We need not solve them but only write the solvability
condition in order to get the amplitude equation. We have(
∇2

1x + ∂z2

)
T3 + w3 = ∂τT1 +

(
uH1 · ∇1x

)
T2 +

(
uH2 · ∇1x

)
T1 +

(
uH1 · ∇1X

)
T1

+w1∂zT2 + w2∂zT1 − 2 (∇1x · ∇1X)T2 − ∇2
1XT1, (4.14a)(

∇2
1x + ∂z2

)2
w3 = Pr−1

[
∂τ
(
∇2

1x + ∂z2

)
w1 + 2 (∇1x · ∇1X)

{(
uH1 · ∇1x

)
w1 + w1∂zw1

}
+∇2

1x

{(
uH1 · ∇1X

)
w1 +

(
uH1 · ∇1x

)
w2 +

(
uH2 · ∇1x

)
w1 + w1∂zw2 + w2∂zw1

}
−∂z∇1x ·

{(
uH1 · ∇1X

)
uH1 +

(
uH1 · ∇1x

)
uH2 +

(
uH2 · ∇1x

)
uH1 + w1∂zu

H
2 + w2∂zu

H
1

}
−∂z∇1X ·

{(
uH1 · ∇1x

)
uH1 + w1∂zu

H
1

}]
−4
(
∇2

1x + ∂zz
)

(∇1x · ∇1X)w2 −
[
4 (∇1x · ∇1X)2 + 2

(
∇2

1x + ∂zz
)
∇2

1X

]
w1. (4.14b)

Again the boundary conditions are unchanged except that containing the Marangoni
number which now reads

∂zzw3 −Mac∇2
1xT3 = Ma (1)∇2

1xT2 + Ma (2)∇2
1xT1 + Mac∇2

1XT1

+2Mac (∇1x · ∇1X)T2 + 2Ma (1) (∇1x · ∇1X)T1. (4.15)

Applying once more the solvability condition, we get the amplitude equations at third
order. The last step is to eliminate Ma (1) and Ma (2) from the amplitude equations at
this order. To do this, we take the problem at order δ3 hence combining the solvability
conditions at orders δ2 and δ3 (for further details on a similar problem see Busse
1967). Then returning to the original fast variables δAj(X,Y , τ)→ A′j(x, y, t). We use
(4.7) where Ma is, say, the experimenter’s value, and ε = (Ma−Mac)/Mac denotes the
departure from the linear threshold and then substitute all these expressions in the
solvability condition at order δ3. Making all these substitutions for the fast variables
which are of order unity, we get the following final form of the amplitude equation
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(expecting no confusion for the reader, in what follows, we omit the prime):

αt∂tA1 = αlεA1 + αd
(
k(1) · ∇1x

)2
A1 + αqA

∗
2A
∗
3

−gd |A1|2A1 − gnd
(
|A2|2 + |A3|2

)
A1

+iβ1

[
A∗3
(
k(2) · ∇1x

)
A∗2 + A∗2

(
k(3) · ∇1x

)
A∗3
]

+iβ2

[
A∗2
(
k(2) · ∇1x

)
A∗3 + A∗3

(
k(3) · ∇1x

)
A∗2
]
, (4.16)

where

αl = 263.68, αt = 43.96 + 11.21 Pr−1, αq = 97.72− 22.2 Pr−1,

gd = 425.1 + 132.6 Pr−1 + 20.82 Pr−2, gnd = 579.8 + 289.3 Pr−1 + 3.48 Pr−2,

αd = 18.56, β1 = −30.65− 7.96 Pr−1,

β2 = −124.2− 0.51 Pr−1, ε = (Ma −Mac)/Mac.

Similar equations exist for A2 and A3 (with circular permutation of the indices). Note
that the hexagonal solution to (4.16) has A of order αq/gd which is fairly small.
Therefore the above approach, combining the solvability at order two and three,
is valid. The amplitude equations describe the pattern dynamics of the hexagonal
structure for weakly supercritical instability (δ � 1). The numerical values of the
coefficients correspond to a very poor conducting open, upper surface, Bi t = 0 and
good conducting rigid, lower plate, Bi b → ∞ (Pearson problem). For example gd and
gnd in (4.16) refer to self-saturation and interacting cubic saturation terms of the
convective modes. Physically, it means that these terms saturate the linear instability
in order to reach a final steady convective regime even near threshold.

A significant result is that the equation (4.16) is a generalized Ginzburg–Landau
equation with advective terms (βi 6= 0). For such equations there is no Lyapunov
functional hence for some values of β we may never reach steady convection. If β
vanishes and then we have a variational problem, the Lyapunov functional allows
(4.16) to be written in the form

αt∂tAj = −δL
δA∗j

(4.17)

with

L =

∫ ∫
dx dy

3∑
j=1

[
−αlε|Aj |2 + αd

∣∣(k(j) · ∇1x

)
Aj
∣∣2 +

gd

2
|Aj |4

]
+gnd

[
|A1|2|A2|2 + |A1|2|A3|2 + |A2|2|A3|2

]
− αq [A1A2A3 + c.c.] . (4.18)

The presence of non-variational terms was predicted by Brand (1989) for buoyancy-
driven Rayleigh–Bénard convection. The form given above incorporates translation
and space reflection symmetries (in the horizontal plane) but the rotation symmetry
(for an arbitrary angle) has been broken with the choice (4.1). However, as already
shown by Gunaratne (1993) to preserve the rotational symmetry (important if we
want to deal with structures of different orientations and fronts) we have to write
(4.16) in the following form:

αt∂tA1 = αlεA1 + αd
(
k(1) · ∇1x − 1

2
i∇2

1x

)2
A1 + αqA

∗
2A
∗
3

−gd |A1|2A1 − gnd
(
|A2|2 + |A3|2

)
A1

+iβ1

[
A∗3
(
k(2) · ∇1x − 1

2
i∇2

1x

)
A∗2 + A∗2

(
k(3) · ∇1x − 1

2
i∇2

1x

)
A∗3
]

+iβ2

[
A∗2
(
k(2) · ∇1x

)
A∗3 + A∗3

(
k(3) · ∇1x

)
A∗2 − i∇1xA

∗
2 · ∇1xA

∗
3

]
. (4.19)
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Figure 2. Variation of β with (a) Bi t, Bi b →∞ and Pr →∞; (b) Bi b, Bi t = 0 and Pr →∞;
(c) Bi t = 0 and Bi b →∞. The solid lines refer to β2, the dashed lines to β1.
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Figure 3. (a) Variation of Pr∗ with Bi t, Bi b →∞ and Pr →∞, and (b) Bi b, Bi t = 0; Pr →∞.

However, for all practical purposes in Bénard convection, the extra higher derivative
terms in (4.19) relative to (4.16) are negligible (except when the projection of one of
the wavenumbers onto the coordinate axis tends to zero).

For completeness we give the numerical values of the β coefficients of the amplitude
equations when the parameters Bi and Pr take different values (figure 2). We first
divide all coefficients by αt to have always unity in front of the time derivative. All
plots refer to variations relative to the Pearson case: Bi t = 0, Bi b → ∞ and Pr → ∞.
Figures 3(a) and 3(b) correspond to the values of Pr∗ for which the coefficient αq
changes sign. It corresponds to a transition from up-hexagons to down-hexagons (fluid
sinking in the centre of the cells) for low values of Pr . In the experiments performed
with silicone oils Pr is much higher than Pr∗ and only up-hexagons are observed.
Pr∗ is practically independent of the values of Bi , hence the transition from up- to
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down-hexagons is intrinsic to the fluid bulk properties (Prandtl number) and nearly
independent of the Biot numbers. Recently, Thess & Bestehorn (1995) have discussed
this transition from up- to down-hexagons. They concluded that the transition passes
through an intermediate state where rolls are stable and for very low values of Pr
(e.g. in liquid metals or helium) the pattern evolution offers a seemingly turbulent
behaviour. Assenheimer & Steinberg (1996) have described a method for varying
the Prandtl number in a buoyancy-driven Rayleigh–Bénard convection experiment.
Without changing the working fluid, it suffices to approach the critical point of
the liquid (in their experiments they used SF6). These authors observed domains of
down-hexagons coexisting with domains of up-hexagons. In §6, we come back to this
question and show how the pattern selection is sensitive to both bulk and boundary
properties.

5. Planforms with two modes forming an arbitrary angle
The derivation of the amplitude equations for two modes A1 and A2 forming an

arbitrary angle θ follows the same procedure as for hexagons. However, with two
modes there is no ‘resonant’ interaction between them and, moreover, the second-
order solution depends on the angle θ between the two wavevectors k(1) and k(2).
Thus the solution of (3.3), (3.4) for the two modes at first order (in δ) is

w1 = W (z)
[
A1(X,Y , τ) exp(ik(1) · r) + A2 exp(ik(2) · r) + c.c.

]
,

T1 = T (z)
[
A1 exp(ik(1) · r) + A2 exp(ik(2) · r) + c.c.

]
,

uH1 =
DW

k2
∇1x

[
A1 exp(ik(1) · r) + A2 exp(ik(2) · r) + c.c.

]
 (5.1)

with k(1) · k(2) = k2 cos θ = k2β. The next step is to solve the equations at order δ2

(4.9), (4.10). Introducing the first-order solution in the right-hand side and separating
vertical and horizontal variables, we get a set of differential equations with wavevectors
of different moduli (Appendix C).

The solvability condition gives

Ma (1) = 0, (5.2)

hence with two modes there is no subcritical instability and the same occurs for the
case of only one mode (rolls). The next step is to introduce the complete second-order
solution (which in this case depends on the angle θ) into the third-order equations
(4.14), (4.15) and then use the Fredholm alternative. It is not necessary to compute
all the terms but it suffices to use the terms already computed from the amplitude
equations for hexagons, and only compute the new term, i.e. the off-diagonal cubic
term g(θ). For the two-mode equations, the quadratic terms A∗2A

∗
3 and the advective

terms (with coefficients β1 and β2) do not appear. The coefficient g(θ) is now angle-
dependent, hence we compute it for several values of θ (see figure 4a).

Applying the solvability condition, and returning to the fast variables the amplitude
equation becomes

αt∂tA1 = αlεA1 + αd
(
k(1) · ∇1x

)2
A1 − gd |A1|2A1 − g(θ)

(
|A2|2

)
A1 (5.3)

and a similar equation for A2 (interchanging the indices 1 and 2). The numerical
values of the coefficients are the same as for the hexagons except for g(θ), the cubic
interaction term. This term has to be computed for each value of the angle θ (as the
second-order solution depends on θ). We have computed this coefficient for several
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Figure 4. Variation of the cubic interaction coefficient (a) g(θ) vs. θ, (b) g(90) vs. Pr−1. The solid
lines refer to the Pearson solution with Bi t = 0 and Bi b → ∞. The dashed line corresponds to
Bi t = 1 and Bi b →∞, and the dotted line corresponds to Bi t = 0 and Bi b = 0.01.

values of Bi for an infinite Prandtl number (figure 4a). Figure 4(b) shows the value
of the cubic interaction term for θ = 90◦. As for buoyancy-driven Rayleigh–Bénard
convection (Manneville 1990), the preferred pattern is rolls if g(90) > gd and squares
if g(90) < gd. We observe asymptotes for the values of 60◦ and 120◦ which correspond
to singularities in the second-order solution (the operator tends to that of the linear
problem), hence the need to use the three resonant modes.

6. Relative stability of patterns
With the amplitude equations derived in the previous two sections, we are now able

to tackle the problem of pattern selection and relative stability of steady planforms.
To study the three usual patterns that could appear above threshold (hexagons,
squares and rolls), we will use six complex amplitudes in the horizontal plane (see
also Kubstrup et al. 1996). The relative orientation of the wavevectors corresponding
to the six amplitudes is shown in figure 5. It corresponds to two families of wavevector
triads. In the present section, we shall restrict consideration to the local stability of
the different stationary perfect patterns. We will not consider here spatial modulation
of these patterns but only competition between perfect planforms. We denote with
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Figure 5. Two triads of resonant wavevectors kc and k′c in the horizontal plane (x, y) forming an
angle of 30◦ one with one other.

gt and gn the cubic interaction term g(θ) with θ equal 30◦ and 90◦, respectively. The
amplitude equations for the six complex amplitudes without spatial terms are

∂tA1 = αlεA1 + αqA
∗
2A
∗
3 − gd |A1|2A1 − gnd

(
|A2|2 + |A3|2

)
A1

−gt
(
|A′1|2 + |A′3|2

)
A1 − gn |A′2|2A1,

∂tA
′
1 = αlεA

′
1 + αqA

′∗
2 A

′∗
3 − gd |A′1|2A′1 − gnd

(
|A′2|2 + |A′3|2

)
A′1

−gt
(
|A1|2 + |A2|2

)
A′1 − gn |A3|2A′1.

 (6.1)

The equations for A2, A3 and A′2, A
′
3 are obtained by circular permutation of the

indices (1, 2, 3) and (1, 2, 3)′.
There are two ways to treat the problem of pattern selection. For a variational

problem one may use a Lyapunov functional and compare the location and relative
size of potential wells as the extrema correspond to the different stationary solutions,
with the minima corresponding to locally stable states. Furthermore, the existence
of a Lyapunov functional ensures asymptotic stability. Alternatively, we may study
the relative stability of patterns by computing the eigenvalues of the linearized
system around each solution. In this approach, there is no need of a global Lyapunov
functional (Segel 1965; Busse 1967). The local stability of each pattern is also obtained
but no information about the size and depth of the potential wells is known, i.e.
about the basins of attraction of the different solutions. The relative stability of
the convective planforms depends on the distance to the threshold, ε, and on the
coefficients of the amplitude equations, hence on the parameters of the problem, as
expected.

Take, for instance, the square pattern. We have

|A1|2 = |A′2|2 =
αl ε

gd + gn
, otherwiseAj = 0, A′j = 0. (6.2)

Thus a square pattern is stable, expected only supercritically, when

ε >
α2
q(gd + gn)

αl(gd + gn − gnd − gt)2
, gnd + gt > gd + gn, gd > gn. (6.3)

Moreover, it can be shown that squares and rolls are mutually excluding patterns (see
figure 9b) as also found by Kubstrup et al. (1996).

For the stability of the hexagons, we make a distinction between the earlier
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mentioned up- and down-hexagons. The stability of up-hexagons relative to down-
hexagons is linked to the sign of αq . For αq > 0 the up-hexagons are stable while
if αq < 0 the down-hexagons are stable. Let us restrict consideration to the local
stability of the up-hexagons (Koschmieder 1993). Note, however, that as αq appears
squared in the expressions that follow, the stability of the down-hexagons obeys the
same condition in the corresponding domain αq < 0. For up-hexagons we have

|Aj |2 =
αq +

[
α2
q + 4αl ε(gd + 2gnd)

]1/2
2 (gd + 2gnd)

, andA′j = 0. (6.4)

The conditions that ensure the stability of the hexagonal pattern are

ε > −
α2
q

4αl(gd + 2gnd)
, gd + 2gnd > 0, gn + 2gt > 0, (6.5)

and two additional conditional inequalities:

if gnd > gd then ε <
α2
q (2gd + gnd)

αl(gnd − gd)2
(6.6)

and

if gd + 2gnd > gn + 2gt then ε <
α2
q (2gt + gn)

αl(gd + 2gnd − gn − 2gt)2
. (6.7)

For the hexagons, there is a range of subcritical stability. For ε < 0, there is coexistence
between the motionless conduction state (all amplitudes vanish) and the hexagonal
structure, hence hysteretic behaviour near the instability threshold. Yet, the computed
values shown in figure 6 indicate that this region is quite narrow thus justifying the
scaling used in this paper (see §4).

Another interesting question is the problem of quasi-patterns (Malomed, Nepom-
nyashchy & Tribelsky 1989). For the above six coupled amplitude equations, there is
also a stationary solution with all amplitudes equal, hence

|Aj |2 = |A′j |2 =
αq +

[
α2
q + 4αl ε(gd + 2gnd + 2gt + gn)

]1/2
2 (gd + 2gnd + 2gt + gn)

. (6.8)

The quasi-pattern planform in this case is shown in figure 7, where it appears as a
penta-dodecagonal structure. This pattern does not satisfy the condition of closed
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Figure 7. The quasi-pattern obtained with the six amplitudes equal. The constant amplitudes are
modulated by the critical wavenumber along each wavevector. The size of the container corresponds
to 16× 16 wavelengths.
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Figure 8. The local stability of the quasi-pattern for Bi b →∞. The pattern is stable in the region
in between the curves. The solid lines correspond to Pr →∞ and the dashed lines to Pr = 7.

convective cells, and it may seldom appear in experiments. It has been observed in the
Faraday parametric excitation experiment (Edwards & Fauve 1993). Following the
same scheme used to assess the local stability of (regular) patterns we have studied
the local stability of the quasi-pattern. Figure 8 depicts the stability conditions found
for Bi b → ∞ and varying Bi t. The quasi-pattern is stable between the curves. The
stability domain of the quasi-patterns appears quite narrow indeed.

For illustration, we provide a few plots. A plot locating the stable patterns in the
parameter space may be drawn (phase-like diagram). Figure 9(a) shows the stable
patterns for Bi t = 0.38, Pr → ∞ and varying Bi b (the subcritical domain between
the motionless state and the hexagonal convective state is so narrow that it does not
appear in this figure). It shows coexistence of hexagons and squares for intermediate
values of the bifurcation parameter ε. For this value of Bi t that corresponds to
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Figure 9. Plot of the local stability of the different patterns: (a) hexagons H and squares S for
Bi t = 0.38, Pr → ∞; (b) rolls R for Bi b → ∞, Pr → ∞; (c) for Bi b → ∞, Bi t = 0. The dashed lines
correspond to hysteretic transitions.

usual experiments (Koschmieder 1993) we cannot find stable rolls patterns. Thus
upon increasing the value of ε, we cross two coexistence domains. First we cross
the coexistence region between the motionless state and hexagons and later the
coexistence region between the hexagon and the square pattern. Figure 9(b) shows
the stable patterns for Bi b → ∞, Pr → ∞ and varying Bi t which appears when
changing the depth of the overlying air layer (2.10). In figure 9(b) we cannot find
rolls for Bi t > 0.36: this last inequality is always satisfied in the experiments so far
performed. This justifies why in standard Bénard experiments a secondary transition
from hexagons to rolls is not observed but rather a transition from hexagons to
squares is found (Nitschke & Thess 1995). Figure 9(c) shows the stable patterns for
Bi b → ∞, Bi t = 0 and varying Pr . Our findings corroborate the result of Thess &
Bestehorn (1995) that predict a transition from up- to down-hexagons through an
intermediate rolls state by lowering Pr . Figure 9(c) corresponds to Pr > Pr∗, where
up-hexagons are stable. The region where up-hexagons are stable shrinks to zero
when Pr is reduced to Pr∗. The use of six amplitudes has permitted a comparison of
the stability of hexagons, squares and rolls.

7. Numerical simulations
The aim of this section is to complete the analytical findings with the numerical

results obtained by integrating (4.16). Rather than integrating only one family of
equations (4.16), we integrate two families to allow for the possibility of obtaining
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Figure 10. Time evolution starting from a random initial condition toward an hexagonal structure,
with ε = 0.063, βi = 0. How the initial condition relaxes toward the final steady state is illustrated
by the evolution of the norm L1. The values of the coefficients entering the amplitude equations are
those given in (4.16) with Pr →∞.

hexagons, squares and rolls. For this purpose we add cubic interaction terms between
these two families of equations (see §5).

We have used a finite difference method with a semi-implicit scheme (second order
in space and first order in time). The details of the method can be found in Christov,
Pontes & Velarde (1996). We followed the time evolution of the patterns by monitoring
a norm that measures the distance between two successive pictures of the convective
state of the system, hence a norm sensitive to both amplitude and phase variations.
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Figure 11. Pulsating evolution (rolls-hexagons) with ε = 0.63, starting from a random initial
condition. The norm L1 exhibits the periodicity with time. The values of the coefficients entering
the amplitude equations are those given in (4.16) with Pr →∞.

The norm is

L1 =
1

∆t

∑
i,j,p |An+1

p (i, j)− Anp(i, j)|∑
i,j,p |An+1

p (i, j)| , (7.1)

where the sums run over the i and j points of the spatial grid, and n is the time
counter. If a steadily decaying value of L1 follows the dynamic evolution until a
constant value is reached, then the system settles in a steady state. Note, however,
that this may not always be the case due to the non-variational terms in (4.16). At
the lateral boundaries of the square container, we impose

Ap = 0, (7.2)

hence no motion at the rigid lateral walls.
Figure 10 displays the time evolution of the reconstructed horizontal temperature

field from the amplitudes

T (x, y, t) ∝
∑
p

Ap exp(ik(p) · r) + c.c.

The computation was performed in a square geometry with eight critical wavelengths
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Figure 12. Time evolution starting from a random initial condition toward a roll structure with
ε = 2.52, βi = 0. How the initial condition relaxes toward the final state is illustrated by the evolution
of the norm L1. The values of the coefficients entering the amplitude equations are those given in
(4.16) with Pr →∞.

as sidelength and ε = 0.063, βi = 0 (variational case). The time evolution of the norm
L1 shows that we reach a stationary state. A similar situation occurs for the same
parameters except that βi 6= 0 (values given by (4.16) for Pr → ∞). We also observe
a monotonic decay to a steady state.

Figure 11 corresponds to ε = 0.63 and βi 6= 0. The hexagons are no longer stable
and a roll structure appears. However the latter does not settle as pulsating hexagons
periodically destabilize the roll pattern.

Figure 12 shows the time evolution towards the roll structure that settles only
for large enough supercriticality. Here in both cases, βi = 0 and βi 6= 0, the system
monotonically evolves towards a final, steady state of rolls. Worth mentioning is that
the rate of convergence to a steady state is faster in the non-variational case than
in the variational one. A variational dynamics appears having a higher structural
rigidity of its phase space thus increasing the relaxation time towards a steady state.

Figure 13 illustrates the formation of a square pattern. Square patterns have been
observed by White (1988) (temperature-dependent viscosity) and Koschmieder &
Prahl (1990) (Bénard–Marangoni convection in small-aspect-ratio containers) and
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Figure 13. Time evolution starting from a random initial condition toward a square pattern with
ε = 2, βi 6= 0. How the initial condition relaxes toward the final steady state is illustrated by the
evolution of the norm L1. The values of the coefficients entering the amplitude equation (4.16)
correspond to Bi t = 2,Bi b →∞ and Pr →∞.

recently, as the result of a secondary instability of the hexagons, by Nitschke & Thess
(1995). It has been demonstrated that the effect of the lateral walls plays a crucial role
in the selection of the planform especially for a small-aspect-ratio container (Dauby
& Lebon 1996). In our case, it is the finite Biot number at the top interface that leads
to the appearance of such a square pattern (see figure 9b).

8. Eckhaus instability
In this section, we study the Eckhaus instability of an hexagonal pattern by

using three coupled amplitude equations (4.16). Our study generalizes some earlier
works (Caroli, Caroli & Roulet 1984; Sushchik & Tsimring 1994; Hoyle 1995). It is
known that one of the mechanisms of instability of an hexagonal pattern in Bénard–
Marangoni convection is the Eckhaus instability. It corresponds to the growth of
wavenumber modulations and leads to a change of the initial wavenumber towards
the optimal value. Physically, the Eckhaus instability is responsible for the creation
and annihilation of convective cells, either rolls or hexagons, at a fixed, constant
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value of the thermal gradient. The Eckhaus band of stability in the parameter space
is found analytically from the phase approximation of the amplitude equations (4.16).
The interest of our study rests on the understanding of the role of the non-variational
terms, βi 6= 0.

A perfect hexagonal pattern is constructed from three rolls with wavevectors
satisfying the resonance condition

k(1)
c + k(2)

c + k(3)
c = 0.

Let us start with off-critical wavenumbers k(1) = k(2) = k(3) 6= kc, and k − kc = kd. The
‘modified’ amplitude equations that govern the dynamics of this hexagonal pattern are
obtained from (4.16) by the following procedure. The first step consists in introducing
a change of function in (4.16). We set

Ap = A′p exp(ik(p)
d · r). (8.1)

Then, we write the equations in new Cartesian coordinates orthogonal and parallel
to the three rolls axes (X p), respectively. We rescale space, time, and amplitude as
follows:

A′p = cAA
′′
p; t′′ = ct t; Xp = cx xp; Yp = cx yp. (8.2)

If we choose

cA =
αq

gd
; ct =

α2
q

gd αt
; cx =

αq

kc(gd αd)1/2
, (8.3)

and if we set

β′′1 =
kc cx

gd cA
β1; β′′2 =

kc cx

gd cA
β2; γ =

gnd

gd
; µ =

gd αl

α2
q

ε; K =
kd

cx
(8.4)

omitting the double prime, the equation (4.16) becomes

∂tA1 = µA1 + A∗2A
∗
3 +

(
iK + ∂X1

)2
A1 − |A1|2A1 − γ

(
|A2|2 + |A3|2

)
A1

+iβ1

[
A∗3
(
−iK + ∂X2

)
A∗2 + A∗2

(
−iK + ∂X3

)
A∗3
]

+iβ2

[
A∗2

(
iK

2
+ ∂X2

)
A∗3 + A∗3

(
iK

2
+ ∂X3

)
A∗2

]
, (8.5)

and similar equations for A2 and A3, obtained by circular permutation of the indices.
As already stated, relative to earlier works (Caroli et al. 1984; Sushchik & Tsimring

1994), we have in our problem terms with coefficients β1 and β2 that make it non-
variational. The stationary homogeneous solution of (8.5) for hexagons is

Ap = A0 ≡
[1 + (2β1 − β2)K]±

{
[1 + (2β1 − β2)K]2 + 4(µ−K2)(1 + 2γ)

}1/2

2(1 + 2γ)
,

p = 1, 2, 3. (8.6)

In §6 we showed that the solution with the minus sign is stable only for very low
values of the Prandtl number, hence we only consider the solution with the plus sign.
Needless to say for the case with the minus sign we can follow the same procedure. In
particular, we study the stability of the off-critical hexagonal solution to long-wave
disturbances (with non-dimensional wavenumber Q� 1, see (8.12)). Thus we assume
that the so-called phase approximation (Q→ 0) is valid.

We add small perturbations to the regular hexagonal pattern in the form

Ap = (A0 + ap) exp(iφp), p = 1, 2, 3, (8.7)
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and ap(r, t), |∇φp(r, t)| � 1. Substitution of (8.7) into (8.5) and linearization with respect
to small perturbations of amplitudes and phases leads to the following equations:

∂tap = −
{
[1 + (2β1 − β2)K+ 2A0]A0 − ∂2

Xp

}
ap + [1 + (2β1 − β2)K− 2γA0]A0(aj + ak)

−2KA0∂Xpφp + β1A
2
0

[
∂Xjφj + ∂Xkφk

]
+ β2A

2
0

[
∂Xjφk + ∂Xkφj

]
, (8.8)

∂tφp = − [1 + (2β1 − β2)K]A0(φp + φj + φk) + ∂2
Xp
φp + 2KA−1

0 ∂Xpap

+β1

[
∂Xjaj + ∂Xkak

]
+ β2

[
∂Xjak + ∂Xkaj

]
. (8.9)

For long-wave perturbations and for sufficiently low values of the forcing µ (propor-
tional to ε), i.e. in the domain where the hexagons are stable to spatially homogeneous
disturbances (§6), time and space derivatives of amplitudes ap in (8.8) are of higher
order in Q and can be neglected in the phase approximation. Then (8.8) become
algebraic relations between ap and phase gradients. Thus we have

ap = λ∂Xpφp+β∂Xjφj +β∂Xkφk+δ∂Xkφj +δ∂Xjφk+ρ∂Xpφk+ρ∂Xpφj +ρ∂Xkφp+ρ∂Xjφp,
(8.10)

with

λ =
(1− b) c− 2c1

(b+ 1)(b− 2)
; β =

−(c+ b c1)

(b+ 1)(b− 2)
; δ =

(1− b) c2

(b+ 1)(b− 2)
; ρ =

−c2

(b+ 1)(b− 2)
;

and

b =
1 + 2A0

1 + (2β1 − β2)K − 2γA0

; c =
2K

1 + (2β1 − β2)K − 2γA0

;

ci =
−βiA0

1 + (2β1 − β2)K − 2γA0

, i = 1, 2.

After substitution of (8.10) into (8.9) we get in compact form

∂tφ = Lφ, (8.11)

where L is a differential operator acting on a vector φ. Looking for marginal stability
of this system of phase equations, we substitute the plane wave solution

φp = Pp exp(iQ · R+ σt) (8.12)

with (R = {X,Y }), and compute the three eigenvalues of the operator. At the lowest
order in Q we get

σ1 = −3a+ O[Q2],

σ2 =
[
− 1

4
+KA−1

0 ( 1
2
β + ρ− δ − 1

2
λ) + (β2 − 1

2
β1)(

1
2
β + ρ− δ − 1

2
λ)
]
Q2,

σ3 =
[
−1 +KA−1

0 (4ρ− 2β − 2λ) + β1(β + λ− 2ρ) + 2β2(β − δ)
]

3
4
Q2,

with a = [1 + (2β1 − β2)K]A0 > 0. Contrary to the variational case the matrix of the
eigenvalue problem is no longer Hermitian, hence its eigenvalues may be complex
numbers and the stability of the solution A0 demands that Re[σp] < 0. The Eckhaus
band corresponds to the region of the (K, µ)-plane where the solution A0 is stable
to long-wave perturbations. In figure 14, we plot the Eckhaus band for positive,
negative and vanishing βi, respectively. Note that due to the fact that the βi terms
yield a non-Hermitian matrix, the eigenvalues may be complex, hence leading to an
oscillatory Eckhaus instability. However, for the parameter range of values used in
our work, we have not observed such oscillatory instability.
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Figure 14. Eckhaus band in the (k,Ma)-plane (homomorphic to the (K, µ)-plane). For βi = 0 (case
A), the hexagons are Eckhaus stable between the two solid lines; β1 = −0.345, β2 = −1.4 (case B)
stable between the two broken lines; β1 = 0.345, β2 = 1.4 (case C) stable between the dotted lines.
The marginal stability curve is also displayed. All curves were obtained for γ = 1.36.

It appears that non-zero values of βi lead to a widening of the Eckhaus band.
The band of allowed wavenumbers has significantly grown relative to the case of
vanishing βi. It is also interesting to note that the curves are symmetric around K
for the transformation β1 = −β1 and β2 = −β2. This result does not appear from the
simple inspection of the formula and may not be valid for other values of βi.

Figure 15 shows the results of numerical integration of (8.5), starting from random
initial conditions and off-critical wavenumber (kd = 0.8,Ma = 120). We see the
emergence of the hexagonal pattern with some defects and joint grains. The evolution
of the phase and modulus of A1 is also displayed. The time scale of the phase
dynamics is much longer than the time scale of the dynamics of the modulus alone
hence justifying the validity of the phase approximation.

9. Conclusions
Amplitude equations for hexagonal planforms and for convective patterns with

two modes forming an arbitrary angle in the surface-tension-gradient-driven Bénard–
Marangoni convection problem have been derived. These amplitude equations de-
scribe the pattern dynamics for weakly supercritical flows. We have obtained the
steady solutions of the amplitude equations that correspond to rolls, hexagons and
squares, and studied their local stability. A plot giving the local stability of these
structures as functions of the parameters of the system (Bi t, Bi b and Pr) has been
produced, and the results have been compared to available experimental data. Past
the onset of instability, the hexagonal structure with fluid rising in the centre of the
cells is selected in agreement with all available experimental results (Koschmieder
1993). For higher supercritical values, coexistence between patterns is predicted in
agreement with a recent experimental result where squares were obtained high above
threshold (Nitschke & Thess 1995). We have also found quasi-patterns with, however,
quite a narrow stability domain.

The numerical integration of the amplitude equations supports the analytical pre-
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Figure 15. Time evolution from a random initial condition (t = 0) of an hexagonal structure with
βi = 0, γ = 1.36, kd = 0.8, Ma = 120.

dictions and has permitted us to highlight the role of the non-variational terms
involved in the dynamics of pattern formation in Bénard–Marangoni convection. On
the one hand, relative to the variational case we have observed a faster convergence
towards a final steady state if it is asymptotically (t→∞) reached. On the other hand,
we have shown that there are cases where a steady state may not occur due to the
non-variational character of the dynamics. Our numerical study justifies the use of
the phase approximation in the analytical prediction of the Eckhaus stable band for
the hexagonal pattern. A novel result is that non-variational terms in the dynamics
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break the symmetry around kc of the Eckhaus band of allowable modes; however
this band is too wide to select a single wavenumber above threshold.
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Appendix A. Linear adjoint problem
In this Appendix, we determine the linear adjoint problem and its solution. We

have

〈u+,L(u)〉 = 〈u,L+(u+)〉, (A 1)

uT =
[
w,T , T |z=1

]
, (A 2)

u+T =
[
w+, T+, ∂zw

+|z=1

]
. (A 3)

A scalar product is introduced

〈a, b〉 = lim
L→∞

1

L2

∫ +L

−L

∫ +L

−L
dxdy

[
a3b3 +

∫ 1

0

(a1b1 + a2b2)dz

]
. (A 4)

By integrating by parts we get the linear adjoint problem and corresponding
boundary conditions (

D2 − k2
)2
W+(z) + T+(z) = 0, (A 5)(

D2 − k2
)
T+(z) = 0; (A 6)

at z = 0

W+ = 0; DW+ = 0; DT+ − Bi bT+ = 0, (A 7)

and at z = 1

W+ = 0; D2W+ = 0; DT+ + Bi tT+ − k2MacDW
+ = 0. (A 8)

For arbitrary values of the parameters, the solution of these equations is found
using the ODE Wolfram (1993) routine for symbolic integration. The normalization
adopted for the adjoint solution is∫ 1

0

W+(z) dz = 1. (A 9)

Appendix B. Second-order solution (hexagons)
The solution to the second order in δ is found as follows:
(i) Solution proportional to

[
A2

1 exp(2ik(1) · r) +A2
2 exp(2i..(2)) +A2

3 exp(2i..(3)) + c.c.
]

(
D2 − 4k2

)
T2(z) +W2(z) = WDT − TDW. (B 1)(

D2 − 4k2
)2
W2(z) = 2Pr−1

[
WD3W −DWD2W

]
, (B 2)
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and the boundary condition (the others are unchanged) in z = 1

D2W2 + 4k2 Mac T2 = 0. (B 3)

For the horizontal velocity we solve(
∇2

1xu
H
2 + ∂z∇1xw2

)
= 0 (B 4)

to obtain

uH2 =
DW2

4k2
∇1x

[
A2

1 exp(2ik(1) · r) + A2
2 exp(2i..(2)) + A2

3 exp(2i..(3)) + c.c.
]
. (B 5)

(ii) Solution proportional to
[
|A1|2 + |A2|2 + |A3|2

]
(zero mode)

D2T0 +W0 = WDT + TDW, (B 6)

D4W0 = 0, (B 7)

and the boundary condition at z = 1

D2W0 = 0. (B 8)

Thus, there is no velocity for the zero mode.

(iii) Solution proportional to[
A1A

∗
2 exp(i(k(1) − k(2)) · r) + A1A

∗
3 exp(i..(1)−(3)) + A2A

∗
3 exp(i..(2)−(3)) + c.c.

]
(
D2 − 3k2

)
T3(z) +W3(z) = 2WDT − TDW, (B 9)(

D2 − 3k2
)2
W3(z) = 3Pr−1

[
WD3W − k2WDW

]
, (B 10)

and the boundary condition at z = 1

D2W3 + 3k2MacT3 = 0. (B 11)

For the horizontal velocity we have

uH3 =
DW3

3k2
∇1x

[
A1A

∗
2 exp(i(k(1) − k(2)) · r)

+A1A
∗
3 exp(i..(1)−(3)) + A2A

∗
3 exp(i..(2)−(3)) + c.c.

]
.

The last system we need to solve is proportional to the k-mode (resonant term). This
is achieved using the solvability condition (Fredholm alternative).

(iv) Solution proportional to exp(ik(1) · r) (the solution proportional to : exp(−i..(1))
is the c.c., and similarly for the amplitudes A2;A3)(

D2 − k2
)
T21(z) +W21(z) = (2WDT + TDW )A∗2A

∗
3 − 2iT

(
k(1) · ∇1X

)
A1, (B 12)(

D2 − k2
)2
W21(z) = Pr−1

[
WD3W + 2DWD2W − 3k2WDW

]
A∗2A

∗
3

−4i
(
D2W − k2W

) (
k(1) · ∇1X

)
A1, (B 13)

and the boundary condition at z = 1

D2W21 + k2MacT21 = −k2Ma (1)TA1 + 2iMacT
(
k(1) · ∇1X

)
A1. (B 14)

For the horizontal velocity we have(
∇2

1x + ∂z2

) (
∇2

1xu21 + ∂z∇1xw21

)
=
(
D3W − k2DW

) [
2
k(1)

k2

(
k(1) · ∇1X

)
A1 − ∇1XA1

]
.
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Appendix C. Second-order solution (2 modes)
The systems proportional to

[
A2

1 exp(2ik(1) · r) + A2
2 exp(2i..(2)) + c.c.

]
and propor-

tional to
[
|A1|2 + |A2|2

]
(zero mode) are the same as for the hexagons.

(i) Solution proportional to[
A1A

∗
2 exp(i(k(1) − k(2)) · r) + c.c.

]
(modulus kγ1/2 = k(2− 2β)1/2)(

D2 − γk2
)
Tγ(z) +Wγ(z) = 2βTDW + 2WDT , (C 1)(

D2 − γk2
)2
Wγ(z) = 2Pr−1

[
(1− β)WD3W + (1− β + βγ)DWD2W

−γ(1 + β)k2WDW
]
, (C 2)

and the boundary condition at z = 1

D2Wγ + γk2MacTγ = 0. (C 3)

For the horizontal velocity we have

uHγ =
DWγ

γk2
∇1x

[
A1A

∗
2 exp(i(k(1) − k(2)) · r) + c.c.

]
.

(ii) Solution proportional to[
A1A2 exp(i(k(1) + k(2)) · r) + c.c.

]
(modulus kα1/2 = k(2 + 2β)1/2)(

D2 − αk2
)
Tα(z) +Wα(z) = 2WDT − 2βTDW, (C 4)(

D2 − αk2
)2
Wα(z) = 2Pr−1

[
(1 + β)WD3W + (1 + β − βα)DWD2W

−α(1− β)k2WDW
]
, (C 5)

and the boundary condition at z = 1

D2Wα + αk2MacTα = 0. (C 6)

For the horizontal velocity we have

uHα =
DWα

αk2
∇1x

[
A1A2 exp(i(k(1) + k(2)) · r) + c.c.

]
The last system we need to solve is proportional to the k-mode (resonant term). Once
more, we need to use the solvability condition to get a solution (Fredholm alternative).

(iii) Solution proportional to exp(ik(1) · r) (The solution proportional to exp(−i..(1))
is the c.c., and similarly for the amplitude A2)(

D2 − k2
)
Ts(z) +Ws(z) = −2iT

(
k(1) · ∇1X

)
A1, (C 7)(

D2 − k2
)2
Ws(z) = −4i

(
D2W − k2W

) (
k(1) · ∇1X

)
A1, (C 8)

and the boundary condition at z = 1

D2Ws + k2MacTs = −k2Ma (1)TA1 + 2iMacT
(
k(1) · ∇1X

)
A1. (C 9)
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