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Abstract

A review is provided of salient findings, old and recent, about Bénard convection flows
in a liquid layer heated from below and open to the ambient air. Instability and
subsequent convective patterns past the instability threshold are the consequence of
surface tension gradients acting along the open surface and by the temperature
sradient maintained across the liquid layer. The onset of hexagons, rolls, squares and
their relative stability is described here as well as the appearance of more complex
patterns like labyrinthine convection flows. Asymptotic unsteadiness is also expected
near the instability threshold as a consequence of the non-variational character of the
problem, hence a precursor of space-time chaos, interfacial turbulence already possible
at low Marangoni number.

1. Introduction

In the vicinity of the surface of separation between two different fluids, the ther-
modynamic properties (such as density, composition, visCOsIties, .. .) undergo strong
variations on a very small scale (the interfacial phase thickness is of the order of
molecular size) [1]. In equilibrium configurations these rapid variations can be
characterised by an energy per unit area, that is commonly referred to interfacial
tension (for liquid/gas interfaces, it is usually called surtace tension). Then to a first
approximation, this allows to consider the interface as a mere surface of discontinuity
in the above mentioned variables. The interfacial tension ¢ usually depends on the
scalar fields in the system (e.g. the electrical field, the temperature field), as well as on the
concentration of foreign materials on the interface, generally called surfactants [2] .
Interfacial gradients leading to tangential stresses may generate motions at the
interface, that, due to continuity and viscosity, extend in the bulk of the adjacent
liquids. This phenomenon, called Marangoni effect leads to either thermocapillary
convection (driving gradient is of thermal origin) or solutocapillary convection (due to
composition gradients). Convection may appear as stationary motion, oscillations
(waves), or interfacial turbulence. In this paper, we shall deal with the Bénard-
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Marangoni convection that occurs when the gradient 1s perpendicular to the interface
and oriented downwards to a liquid layer open to air.

When a thin fluid layer is heated from below the motionless state is unstable if the
vertical temperature gradient overcomes a threshold value imposed by viscosity and
heat diffusivity that tend to stop or slow down motion and homogenize the tempera-
ture distribution, respectively. The surface tension gradient-driven transition from the
motionless conduction state to a convective state in which the fluid motion exhibits a
patterned structure (convective cells: hexagons, squares ot rolls) was first systematically
studied by Bénard [3] though he did not clarty enough the relevant role played by the
surface tension (see [4—6]). The rationale for the instability goes as follows. We assume
a spontaneous temperature disturbance at the open surface; e.g. a cooling (marked- 1n
Fig. 1). Therefore, at this point, the surface tension is higher (in general, the surface
tension is a decreasing function of temperature), and the surface tends to shrink,
dragging by viscosity the fluid toward this cold point. By conservation of mass, the fluid
sinks in the bulk and rises at the surface away from the cold spot. The initial
perturbation will originate a convective motion if the rising hot fluid (marked + )hasa
sufficient high temperature in order to maintain the surface temperature gradient, 1.e. 1f
the temperature difference between the top and bottom of the layer (AT) reaches a
critical value. The factors tending to prevent the convection are heat diffusion and
viscosity. Then we have a destabilising mechanism injecting energy into the system
through the surface tension gradient: —{(do/0T)AT and friction with dissipation:
viscosity (u) and heat (k). The energy or force balance between these two oposing

processes can be best expressed with a dimensionless parameter, the Marangont

number: Ma = a/01) . This quantity can also be considered as a Reynolds
LUK

number or, more appropriately, as a Péclet number.

In the following sections, we study the transition between the two states, conduction to
convection. First, we write the governing equations of the system for mass, momentum
and energy, and the boundary conditions. Generally, these equations are difficult to
solve in compact analytical form, so we shall use numerical methods and/or we shall
simplify the original equations down to a tractable, albeit relevant problem. A method
is to linearize the equations and boundary conditions, then solve them to find the
linearized solution. Linear theory and the corresponding linear stability analysis yield
sufficient conditions for instability. Then building on linear results we may try further
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Fig. 1: Sketch of the Bénard-Marangont instability.
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progress into the original nonlinear problem by using perturbative methods (asym-
ptotic, multiple-scales methods). Perturbative methods allow getting approximations
‘o the nonlinear solution (e.g. higher order corrections to the velocity profile), removing
degeneracies due to the linearization and assessing the stability of the (linear) solutions.

The paper is organised as follows. Section 2 contains an historical introduction. In
Section 3 we recall the amplitude equations for supercritical, cellular flows. In Section 4
we present the results of the integration of these equations. Section 5 deals with the
Eckhausinstability. In Section 6 we discuss the evolution of defects and the appearance
of complex convective structures. In Section 7 we provide some conclusions.

2. Remarks of historical mterest

The systematic experimental research on patterned convection began with H. Bénard
37 although earlier authors reported phenomena similar to the findings of Bénard
[7-9] (see also [10]). Bénard set an example for virtually all subsequent experiments on
convection in shallow horizontal fluid layers by supplying uniform heating from below
and trying to eliminate the influence ot the lateral confinement of the fluid. The major
finding of Bénard was the discovery of hexagonal convection cells which are now
commonly referred to as Bénard cells [5, 61. The circulation of the fluid in the
hexagonal cells is generally upwards in the center (up-hexagons) and downwards along
the rim. Optical studies also showed that the surface of the fluid is depressed over the
center of the cells. The deformation of the surface 1s about a micron for a spermaceti
layer about one millimeter deep and AT ~ Q0 K. Bénard also found that the ratio of the
distance between the cell centers and the depth of the fluid 1s constant, at least to a first
approximation, hence defining a universal dimensionless wavelength at threshold.

Although Bénard was aware of the role of surface tension and surface tension gradients
in his experiments, it took, however, five decades to unambiguously assess, experimen-
tally and theoretically, that indeed the surface tension gradient rather than buoyancy
was the cause of Bénard cells in thin liquid films [4,11-13]. The first author to explain
the effect of the surface tension gradients on Bénard convection was Pearson [14].
According to Pearson’s theory, for a critical Marangoni number Ma, the layer displays
a specific short wave pattern of stationary cellular convection. The actual value of Ma,

depends on boundary conditions, €.g. for a liquid layer resting on a heated copper plate
and open to air Ma, ~ 80 and k =~ 2. |

Since these pioneering works many publications have been devoted to the Marangoni
instability of a Bénard layer, in both experimental and theoretical directions. The
review articles by Normand, Pomeau and Velarde [4] and by Davis [15] discuss the
role of both buoyancy and surface tension gradients in triggering convective mstability.
Recently, a review article by Cross and Hohenberg [16] was devoted to non-
equilibrium pattern formation, with a sketchy section dealing with genuine Bénard
cells i.e. Bénard-Marangoni convection. Koschmieder who has been for decades a key
figure in the experimental investigation of the Bénard problem wrote recently a very
valuable monograph [6]. There are still challenging problems like relative stability of
patterns, higher transitions and nterfacial turbulence, a case of space-time chaos with
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high dissipation (high Peclet number flows at variance with mostly inertial high
Reynolds number turbulent flows).

To cope with the analytical difficulties of Navier-Stokes and Fourier equations, one has
the alternative of numerical integration, albeit in limiting cases (like with fluids having
large Prandtl number) as done €.g. by Thess and Orzag [17], or to develop a weakly
non-linear approach around instability thresholds as Landau did for phase transitions.
Perturbative methods were first applied to steady Bénard-Marangoni convection by
Scanlon and Segel [18] who used very drastic, albeit relevant simplifications, 1.e.
finite Prandtl number and semi-infinite fluid layer. This same approximation was
latter used by Levchenko and Chernyakov [19] and by Velarde and collaborators
[20-227 to discuss interfacial waves in Bénard layers. Scanlon and Segel predicted the
selection of an hexagonal convective pattern in favor of rolls above the onset of
instability. They also showed that the hexagonal structure may be stable for subcritical
values of the Marangoni number. The theory of Scanlon and Segel was significantly

improved by Cloot and Lebon 23] and by Bragard and Lebon [241].

Fxperimental investigations increased our knowledge of the problem. For instance,
following earlier work by Koschmieder, Cerisier et al. [25] studied the relative stability
of rolls and hexagons, and concluded that hexagons are less stable relative to rolls
when the depth of the fluid is increased. This result is in good ageement with the result
obtained by Lebon and collaborators [23,24] who predicted a transition from
hexagons to rolls for high Marangoni numbers. They also predicted the existence of a
range where both hexagons and roll patterns can coexist. A recent experiment [26]
has shown the hysteretic behavior occurring in Bénard-Marangoni convection. This 1s
to be expected in view of the discrepancy existing between energy and linear stability
approaches to the problem [27-29]. The hysteresis appears in a 3% subcritical
range where both conduction and convective hexagonal motion can coexist.
Schatz et al. found a critical Marangoni number of 84 very close to the predicted
value by Pearson (ie. Ma, = 79.6). Another recent experiment [30] shows a
secondary instability from a perfectly hexagonal pattern to a square pattern. The
experimental set-up used by the latter authors differs from that used by Bénard
because the gas layer at the upper surface 1s very thin and consequently in a rather
drastic way affects the thermal boundary condition at the interface between the fluid
and gas layer, a point earlier remarked by Koschmieder [6]. Recently, we have derived
the amplitude equation for the modes of convection above threshold, taking care of the
dependence of the coefficients of these equations on various dimensionless parameters
of the system, including various thermal boundary conditions, through a varying,
suitable Biot number (to be defined below) [31]. Our amplitude equations together
with the appropriate boundary conditions for Bénard-Marangoni convection yield
various possible solutions. These include convective patterns like hexagons, rolls, and
squares, a transition from an hexagonal structure to a labyrinthine structure when the
size of the system is large enough (lateral size of the container of the order of one
hundred wavelengths), and unsteadiness, like a precursor of interfacial turbulence.
Several other authors have taken an approach similar to ours to explore various 1ssues

[32-367.
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Bénard convection flows 5

3. Evolution toward patterned convection

Close to the instability threshold the system may be described by amplitude equations
having a universalform [4, 16, 18,37-39]. The coefficients of these amplitude equations
are specific to each instability, they depend on the dimensionless numbers of the
problem, hence fluid properties, boundary conditions, and on the external forcing. In
our problem, disregarding aspect ratio (relative lateral size to liquid depth) three
dimensionless numbers are relevant:

g dAT hd
Pret:Mg= — - Bi=— (1)
K 0T k |

which are the Prandtl, Marangoni and Biot numbers, respectively. The quantities v and
« are the kinematic and thermal diffusivity, respectively, o is the surface tension, d is the
thickness of the laver, A T is the temperature difference between the open surface and
the bottom plate taken positive when the heating 1s from the liquid size. n 1s the dynamic
viscosity, & is the thermal surface conductance and k 1s the thermal conductivity of the
fluid layer. The Prandtl number is an intrinsic property of the fluid. The Biot number
defines the heat transfer at boundaries: a large (infinite) value of the Biot number
corresponds to a perfectly conducting boundary, and a vanishing value corresponds to
a poorly conducting surface.

We start with the standard incompressible fluid mechanics equations: Navier-Stokes,
continuity and energy equations, that we take in the Boussinesq approximation
[40—-447. The assumption of an undeformed open surface corresponds to the limit of
strong surface tension. The validity of this assumption is a subtle question [ 15,29] but
for a vanishing capillary number, except in the long wave limit k — 0, we can assume
with no loss of generality a flat interface. In the case of a one millimeter deep silicone o1l,
the capillary number takes the value:

Ca="" _56-10-*

o, d

Using appropriate scales for time, space, velocity, pressure and so on the problem 1s
then in dimensionless form: |

ov

5 +(v:-V)v=Pr(—Vp+ Av)
Vv=0 (2)
0T
Lv VT =AT.
Ot

Note that for simplicity and as we shall consider no surface deform ation and quite thin
layers like in most of Bénard experiments we disregard gravity. The boundary
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conditions are: at the lower uniformly heated rigid plate:
== (3)
0, T — Bi°T = constant.
and at the top undeformable free surface:
w =1
— Mad T =0_u
—Mad, T =0
0,T + Bi'T = constant.

To study the transition between the motionless conduction state and the convective
state, and the evolution of the structures that appear in this convective state, we use a
multiple scale perturbation analysis in the vicinity of the onset of convection. We define
a small parameter in order to separate the fast variables that describe the instability and
the slow ones that are useful to describe the pattern dynamics. Further technical details

are given elsewhere [31]. The temperature dependence for a hexagonal pattern reads
as:

T=T()[A4,(X, Y, 1)exp(ikVr) + A, exp (ik?-r) + A;exp (ik” 1) +cc] (4)
where k¥ denotes three linearly critical wave vectors oriented at 120 degrees in the
horizontal plane. The amplitude equations in the horizontal plane are (e.g. for 4,):

00,4, =agA, + o (kD-V )2 A, + o A4,

— 9414174, — gna(14,17 +1451%) 4, (5)
+if, [A (kP V) A, + A, (kP V) 47]
+ B, [A(k?- V) A5 + 43(kP-V ) A,],

where

o, = 263.68

o, = 43.96 1121 Pr !

o, =97.72-222Pr™*
g,=4251+132.6Pr ' +20.82Pr~?
g, =579.8+289.3Pr ' +348Pr 7
o, = 18.56

B, = —30.65—796Pr""
B,=—1242—-051Pr*

¢=(Ma— Ma,)/Ma,.
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Béenard convection flows 7

Similar equations exist for 4, and A, (with circular permutation of the indices). The
amplitude equations describe the pattern dynamics of the hexagonal structure for a
weakly supercritical region past the instability threshold. The numerical values of the
coefficients correspond to the specific case of a poor conducting open, upper surface,
Bi' = 0 and good conducting rigid, lower plate, Bi® — oo which are typical of Bénard
and Koschmieder experiments. Other thermal conditions at the top (superscript “t”)
and bottom (superscript “b”) merely change the numerical values of the coefficients.

The equations (5) are generalized Ginzburg-Landau equations with genuinely new
advective terms when f3, # 0. For the system of these equations there is no Lyapunov
functional, hence for some value of the fs we may never reach steady convection. This
possible unsteadiness at large times leading to a seemingly chaotic flow pattern may
well be considered as a form of interfacial turbulence in a dissipative flow. For a
variational problem, when f; = 0 say, the Lyapunov functional allows to write (5) in the
form:

with

r 3 —
! ;
K = JJ dxdy ) | —oeld|* + o | (kB-V ) A | + %\Ajﬁ

p=Ul -

T Gnd [‘Aifziﬂz‘z T ‘Aﬂziﬂﬂz a |Az‘2|A3£2] T %[Az A, Ay +cc .

The amplitude equations for two modes 4, and 4, forming an arbitrary angle 6 can
also be derived using the same procedure as for an hexagonal pattern. Further details
about symmetries and related technical matters can be found in Refs. [31-32]. The
temperature dependence in this case 1s:

T =T(z)[A, exp (ikV-r) + 4, exp (ik™r) + c.c.] (6)
where k-k® = k2 cos @ = k? B. For the two-mode equations, the quadratic terms 4; A,
and the advective terms (with coefficients ff, and f,) do not appear. |

Applying the solvability condition, we get
0,0, Ay = e Ay + oy (KD-V )24, — galA|* A — ge(14,1°) 4,

and a similar equation for 4, (interchanging the indices 1 and 2). The numerical values
of the coefficients are the same as for the hexagons except for g4, the cubic interaction
term. This term has to be computed for each value of the angle 6 (as the second order
solution depends on 6).

The relative stability of steady platforms (hexagons, squares and rolls) has been
studied by varying the parameters of the system. The results summarized in phase
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Fig. 2: Local stability of different patterns for Bi‘ = 0. Pr— co. The dashed lines correspond to
hysteretic transitions [31].
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Fig. 3: Local stability of different patterns for Bi® — 0. Pr — 0. The dashed lines correspond to
hysteretic transitions {31].

diagrams (Figs. 2 and 3), in the case of large Prandtl number, show the possibility of
coexistence of stable patterns. Thus upon increasing the value &, we cross two
coexistence domains. First we cross the coexistence between the motionless state and
hexagons, and later on the coexistence between two different types of pattern.

4. Numerical results

Earlier work on the integration of the Boussinesq equations for the Bénard-Marangoni
problem dealt with the emergence of the hexagonal pattern above threshold [17,45].
Other studies of the emergence of patterns, especially in Rayleigh-Bénard convection
have used approximate models, e.g. the Swift-Hohenberg [46] variational model and
Knobloch’s non-variational model [47] which is also valid for Bénard-Marangoni
convection. Interesting to be noted is that in the buoyancy-driven, Rayleigh-Bénard
problem, the latest available derivation of amplitude equations for rolls due to
Zippelius and Siggia (1983) [48] included a non-relaxational term added ad hoc to the
Newell-Whitehead equation [39] to account for finite values of the Prandtl number.

J. Non-Equilib. Thermodyn. Vol. 22, 1997, No. |
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Fig. 4: Two triads of resonant wavevectors k_and K_ ;1 the horizontal plane (x, V) forming an
angle of 30 degrees, one with one other.

Then due to this non-variational term, even 1t lowest order, there could be an internal
yorticity generation that destabilizes the pattern. In our surface tension gradient-driven
(Bénard-Marangoni) problem the amplitude equations have non-variational terms
even at Pr— oo and we shall discuss turther below the relevance of this finding to
experiments [6,26,49, 507. The latter treated the problem of non-Boussinesq fluids
with temperature-dependent VISCOSity.

Let us see the results of numerical integration of the amplitude equations (5)1n a square
geometry, starting from random initial conditions. We integrate two families of
amplitude equations (6 complex amplitudes) (see Fig. 4) to allow for the possibility to
obtain hexagons, squares and rolls. We have used a finite difference method with a
semi-implicit scheme (second order in space and first order in time). The details of the
ethod can be found in Christov et al. [51]. We followed the time evolution of the
patterns by monitoring a norm that measures ihe distance between two Successive
convective states of the system, hence a norm sensitive to both amplitude and phase
variations. The norm 1s:

AL A UY ) Ay, )
At TylA4tenl

L, (7)

where the sums run over the i and j points of the spatial grid, and nis the time counter. A
constant decaying value of L, ensures the settling of the system 1n a steady state, that
may eventually be not the case due to the non-variational terms in Egs.(5).

Figure 5 displays the time svolution of the reconstructed horizontal temperature field
from the amplitudes

T(x,y,t)ocy A;exp(kir)+cc

The simulation was performed in a square geometry with 8 critical wavelengths as side
length, and & = 0.063, f; =0 (variational case). The norm L, versus time Shows that we
asymptotically tend towards a stationary state. Another numerical simulation with the
same parameters except that B.#0 have been performed and we also observe a
monotonic convergence until a final steady state is reached.

J. Non-Equilib. Thermodyn. Vol. 22, 1997, No. 1
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a) D)

Fig. 5: a) Time evolution starting from random initial condition toward a hexagonal structure,
with ¢ = 0.063, 8. = 0. b) How the initial condition relaxes toward the final state is illustrated by
the evolution of the norm L,. The values of the coefficients entering in the amplitude equations
are those given in Egs. 5 with Pr— co, [31].

Figure 6 corresponds to the computation for e = 0.63 and f3; # 0. The hexagons are no
longer stable and a roll structure appears. However, the latter does not settle as
pulsating hexagons periodically destabilize the roll pattern at all times. In the experi-
ments, the value ¢ = 0.63 is too small to allow the observation of such pulsating action
of hexagons on rolls. However, experiments by both Koschmieder and Cerisier have
shown hexagons albeit with many defects. The apparent disagreement of the numerical
simulations and the experiments may come from the fact that more than 6 complex
amplitudes are needed to describe the system even for such low value of the super-
criticality. Actually, in practical terms, the validity of the description of the convection
by amplitude equations appears to be much more limited than expected. The introduc-
tion of non-variational terms into the amplitude equations drastically reduces the limit
of validity of the description of the convection through amplitude equations. Indeed, a
computation conducted for the same values of the parameters but with §; =0 shows
that the system still monotonically relaxes toward a final, steady hexagonal structure.
The possible coexistence of hexagons and rolls in a layer of fluid with variable thickness
has been observed in the experiment of Schatz et al. [ 26].

In Figure 7 appears the time evolution towards the roll structure that settles for large
enough supercriticality. In both cases, f; =0 and S, #0, the system monotonically
evolves towards a final, steady state of rolls. Worth mentioning is that the rate of
convergence to a steady state is faster in the non-variational case than in the variational
case. A variational dynamics has a higher structural rigidity of its phase space relative
to the non-variational case and, consequently, does not allow a fast relaxation.
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Fig. 6: a) Pulsating evolution (rolls-hexagons) with ¢ = 0.63, starting from a random initial
condition. b) The norm L, exhibits the periodicity with time. The values of the coefficients
entering in the amplitude equations are those given in Egs. 5 with Pr— o0, [31].

Figure 8 illustrates the formation of a square pattern, some time ago observed 1n
experiment by White [50] and also found recently as the result of a secondary
instability of the hexagons [30]. A finite Biot number at the top interface appears to be
responsible for the appearance of such square pattern. K oschmieder and Prahl [52]
also found squares in small (aspect-ratio) boxes, a finding theoretically supported by
the work of Dauby and Lebon [36].

5. Eckhaus instability

The Eckhaus instability corresponds to the modulation of the wavenumber of the
pattern (see, e.g. [4,53]). Caroliet al. [54] and Sushchik and Tsimring [ 55] have studied
the Eckhaus instability of a hexagonal pattern using amplitude equations but without
nonlinear spatial terms. In a previous article [31], we generalized these studies to the
non variational case. Physically, the Eckhaus instability is responsible for the creation
and anihilation of convective cells.

Koschmieder [6], has reported on several experiments dealing with the size of the
wavenumber for supercritical values in Bénard convection. Benard [ 3] himself reported
that the dimension of the cells in his experiments had a minimum at a temperature
slightly above the temperature at which the pattern disappeared. Koschmieder [56] and
Koschmieder and Switzer [57] in their experiments agree with Benard's findings.

J. Non-Equilib. Thermodyn. Vol. 22, 1997, No. 1



2 J. Bragard, M. G. Velarde

10
|
?1 |
i |
’ D-H :L‘f |
E Kmam__if}xh; |
10° | m\_{
0 5000 10000
Norm vs time
a) D)

Fig.7: a) Time evolution starting from a random initial condition toward a roll structure with
¢ =2.52, B, =0. b) How the initial condition relaxes toward the final state is illustrated by the
evolution of the norm L,. The values of the coefficients entering in the amplitude equations are
those given in Egs. 5 with Pr— oo, [31].
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Fig. 8: a) Time evolution starting from a random initial condition toward a square pattern with
¢ = 2., B.=0.starting from random initial condition. b) How the initial condition relaxes toward
the final state is illustrated by the evolution of the norm L,. The values of the coefficients entering
in the amplitude equations correspond to Bi' = 2, Bi’ — o0 and Pr—co, [31].

Dauzére [ 58] and Cerisier et al. [49] found the opposite result. They observed an increase
in the cell size with increasing Marangoni number. Cerisier et al. plotted the slope of the
wavelength 1 versus ¢ = (Ma — Ma‘)/Ma‘ and they obtained di/de =0.06. This result
corresponds to the dotted line in Figure 9. The experiment was performed using silicone
oil in a layer of about 1.62 mm thickness which favours surface tension effects rather than
buoyancy. The value of the critical wavenumber was about 2.12. In Figure 9 we have
redrawn their results to fit with the critical wavenumber k.= 1.99. Koschmieder and
Switzer [57] obtained a trend that was just opposite: a growth of the number of
convective cells upon increasing the supercritical heating. The points in Figure 9 are
sathered from their experiment with a 1.2 mm fluid layer thickness. For this experiment
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Fig. 9. Eckhaus band in the (k. Ma) plane. The broken line corresponds to the locus of
wavenumbers with maximum linear growth rate. The cluster of points corresponds to the data

reported by Koschmieder and Switzer [49] while the dotted line co rresponds to the experiment
by Cerisier et al. [43].

they also used silicone oil and the critical wavenumber was about 1.85. In Figure 9, we
also shift the origin of their critical point to fit the theoretical value. Figure 9 also displays
the corresponding Eckhaus band (for values of f, = —0.345, f, = — 1.4,y = 1.36) which
are the theoretical values corresponding to the experiments and the dashed line
corresponds to the locus of the theoretical linear maximum growth rate. It clearly
appears that both experimental results lay in the Eckhaus band. Koschmieder’s results
are closer to the theoretical curve corresponding to the maximum growth rate. The
conflicting trends appearing in the two experiments can be traced back to the different
protocoles followed by these two experimenters. Koschmieder increased the temperature
quite smoothly, hence a quasi-steady experiment. At variance with Koschmieder,
Cerisier increased the temperature rather suddenly with the expected consequence that
more non-linear processes are involved in the dynamics of wavenumber selection, or too
long relaxation times beyond their observational time, hence a different result.

6. Defects and complex convection structures

The presence of inhomogeneities or defects in patterns found far from thermodynamic
equilibrium is nowadays a well established experimental fact [ 59 |. However, the defects
that appear in hexagonal patterns have not yet fully been studied. The dynamics of such
defects is quite complicated and the analytical tools to deal with the problem are not
simple. In the system of three complex amplitude equations we can write for an
hepta-penta defect:

. | Y, — Y°
A, =Aytanh (e /(X; = X))+ (Y, = Y))*) o, = arctanXl _X}j - Qg
1 |
" 0y 04 2 Y’?_YE}
A, = Aytanh (o /(X, — X5) + (Y, —Y3)°) qbl:arctanX”__X“U (8)

Ay=A, ¢3=0,
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Fig. 10. Time evolution of an hepta-penta defect with Ma = 85. The norm L, relaxes toward a

stationary state. The values of the coeflicients entering in the amplitude equations are those given
n Egs. 5> with Pr—0, [31].

The hepta-penta defect comes from the annihilation of two “vortex” defects of opposite
topological charge. The hepta-penta defect after its creation tends to move through the
system until it reaches a boundary where it disappears. Tsimring [607 has studied the
velocity of such a penta-hepta defect and the mobility tensor related to the defect. His
study used a variational amplitude equation. Preliminary numerical exploration
(F1g. 10} already indicates that the relaxation of a hepta-penta defect is much easier in

the non-variational case as the structural rigidity of the system is diminished in the
latter case.

Recent experiments on buoyancy-driven (Rayleigh-Bénard) convection by Assen-
heimer and Steinberg [61-637 have shown complex convection structures that were
earlier observed also by Orell and Westwater [64] and Linde [657 in the mass transfer
Benard-Marangoni problem. The convective structures that have been observed by
Assenheimer and Steinberg are spiral, target patterns, and the transition from hexa-
gons to a labyrinthine structure. Assenheimer and Steinberg’s experiment deals with a
fluid (SFg) close to its critical thermodynamic point, in a system with quite large aspect
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Fig. 11. Time evolution, starting from random initial condition, toward a labyrinthine structure
with Ma=1.5Ma,. The norm L, does not relax toward a qtatmnar}f state. The values of the
coefficients entering 1n the amphtuda equations are those given in Eqs. 5 with Pr— oo, [31].

ratio, and however, a not too long time scale. Let us see how these complex structures
are predicted from our amplitude equations but for Bénard-Marangoni convection.
[ntegrating the amplitude equations (5) for parameters value close to the “suspected”
transition from hexagons to the labyrinthine structure, we found indeed an astonish-

ingly labyrinthine structure. Figure 11 shows the evolution of the structure for a large
aspect ratio.

7. Conclusions

Although Bénard convection, since the pioneer has received due attention by careful
experimenters like Koschmieder and others, and significant understanding has been
achieved, yet surface tension gradient-driven (Bénard-Marangoni) convection Hows
still deserve further study. Indeed, as a paradigmatic form of a spontaneous seli-
organizing system, the doctrine about the original Bénard problem has not reached the
degree of sophistication, in theory and experimentation, attained in buoyancy-driven
(Rayleigh-Bénard)) convection. Needless to say, one reason 1s the relative higher
difficulty of conducting a clean, clear-cut controlled experiment when surface tension
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gradients are involved. It is only quite recently that appropriate techniques, to carefully
handle surface tension and surface tension gradient-driven phenomena, have become
available. As surface tension gradient-driven flows are of utmost importance for heat
and mass transfer across interfaces, crystal growth, and other engineering processes this
adds interest to further study the problem.

Here we have described some of the major findings, old and recent, about Bénard
convection. Theoretical, analytical and numerical as well as experimental results,
clearly illustrate the richness of the phenomena predicted and observed. Among the
results to be highlighted are the theoretical prediction that, in Benard convection,
attaining a steady state with time independent constraints may, however, not always be
the case. The origin of this asymptotic unsteadiness, hence possible space and time
chaos or interfacial turbulence even at low Marangoni number, can be traced back to
the lack of a variational principle (a Lyapunov function) governing the evolution of the
system even in a vicinity of the instability threshold. Although the (full, nonlinear)
Navier-Stokes equations (and the heat equation) with corresponding boundary condi-
tions cannot be derived from a potential yet we know that in many cases, when the
system is studied in the neighborhood of an instability point, suitable variational
equations describe its evolution. This is, generally, not the case for Bénard-Marangoni
convection. Another salient feature of Bénard convection flows is that for large
containers not only standard convection patterns, like hexagons, rolls or squares,
regular or with defects, may appear. Our prediction 1s that labyrinthine, complex flow
patterns are possible and have actually been observed albeit in not sufficiently well
controlled experiments. Whether these complex patterns, presumably also precursors
of interfacial turbulence are actually realizable in carefully controlled experiments 1s
not unexpected in view of the non-variational character of the evolution equations
describing Bénard convection flows. Moreover, labyrinthine flows have already been
observed in some cases of buoyancy-driven (Rayleigh-Bénard) convection. Thus, 1n
view of the universality of the theoretical and experimental results here discussed,
further theoretical and experimental works are foreseing in the near future about
Bénard convection flows, both at low and high Marangoni numbers.
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