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Abstract

Mathematical modeling of unperturbed and perturbed tumor growth dynamics (TGD) in pre-

clinical experiments provides an opportunity to establish translational frameworks. The most

commonly used unperturbed tumor growth models (i.e. linear, exponential, Gompertz and

Simeoni) describe a monotonic increase and although they capture the mean trend of the

data reasonably well, systematic model misspecifications can be identified. This represents

an opportunity to investigate possible underlying mechanisms controlling tumor growth

dynamics through a mathematical framework. The overall goal of this work is to develop a

data-driven semi-mechanistic model describing non-monotonic tumor growth in untreated

mice. For this purpose, longitudinal tumor volume profiles from different tumor types and cell

lines were pooled together and analyzed using the population approach. After characteriz-

ing the oscillatory patterns (oscillator half-periods between 8–11 days) and confirming that

they were systematically observed across the different preclinical experiments available

(p<10−9), a tumor growth model was built including the interplay between resources (i.e.

oxygen or nutrients), angiogenesis and cancer cells. The new structure, in addition to

improving the model diagnostic compared to the previously used tumor growth models (i.e.

AIC reduction of 71.48 and absence of autocorrelation in the residuals (p>0.05)), allows the

evaluation of the different oncologic treatments in a mechanistic way. Drug effects can

potentially, be included in relevant processes taking place during tumor growth. In brief, the

new model, in addition to describing non-monotonic tumor growth and the interaction

between biological factors of the tumor microenvironment, can be used to explore different

drug scenarios in monotherapy or combination during preclinical drug development.
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Author summary

Mathematical models for tumor growth kinetics have been widely used for several

decades, including among others the exponential, the Gompertz and the Simeoni model.

However, as the knowledge of the multiple processes taking place during tumor microen-

vironment increases, models including plausible mechanisms are becoming increasingly

important. In this work, we highlight the oscillatory dynamics observed in the tumor

growth over time curves and we propose a novel semi-mechanistic model capable of

describing the non-monotonic growth including the interaction between cancer cells,

angiogenesis, and resources such as nutrients or oxygen, in the tumor microenvironment.

Our model, with respect to previous literature models, improves diagnostic plots such as

weighted residuals versus time plots and residuals lag plots, and individual predictions.

Additionally, the framework allows the incorporation of anticancer treatments consider-

ing their mechanisms of action. Therefore, the model constitutes a valuable tool in the

development of therapeutic strategies, supporting the rational design and selection of dif-

ferent treatment scenarios in preclinical drug development.

Introduction

Tumor growth dynamic (TGD) modeling represents a key element of model-based drug dis-

covery and development in oncology [1]. Specifically, among other applications, it has been

used to select promising drug candidates, assist the selection of the first-in-human dose, gener-

ate predictive quantitative translational frameworks, leverage clinical data, and identify rele-

vant biomarkers [2–5].

Over the years, different models have been developed to describe tumor progression and

tumor shrinkage effects of different anticancer therapeutic strategies [6–9]. From a high-level

perspective, these tumor growth inhibition (TGI) models incorporate two main components:

(i) disease (unperturbed tumor) progression and (ii) treatment effects. The latter comprises all

aspects driving the link between drug exposure and drug effects. On the other hand, disease

progression models describe the natural growth of cancer cells in the absence of treatment

[10]. Currently, different model structures have been proposed to characterize unperturbed

tumor dynamics relying on reasonable assumptions and providing adequate descriptive and

predictive power [11–13] (see methods section for a detailed description of the most used

models in data-driven analysis). The main characteristic of these model structures is their

monotonic nature (i.e. predictions are entirely non-increasing, or entirely non-decreasing).

This is due to the fact that most currently accepted models are variants of the exponential

model with scarce mechanistic support. However, data from the literature indicate that, even

in the absence of treatment, tumor growth rate may increase or decrease at different stages

generating oscillatory patterns [13–15], which cannot be satisfactorily described by the afore-

mentioned models (Fig 1).

Tumor growth is a complex and dynamic process involving cell-cell and cell-extracellular

matrix interactions that allow cancer cells proliferation, drug resistance and metastasis. During

the development of solid tumors, a large amount of nutrients is consumed due to the rapid

proliferation of tumor cells [16]. Moreover, high oxygen consumption, lack of nutrients and

accumulation of metabolic substances in cells can create an oxygen-deficient microenviron-

ment that is not suitable for tumor cell growth [17]. Tumor hypoxia-induced responses

include, among others, enhanced angiogenesis and vasculogenesis [18]. Moreover, hypoxia

also contributes to a reduced anti-tumor immune response through different pathways [19].
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These processes can result in patterns of growth showing deceleration followed by acceleration

(oscillatory tumor growth patterns).

Mathematical model structures can be constructed to reveal key mechanisms generating

subtle states of imbalance that could explain the oscillatory patterns in tumor growth. How-

ever, to the best of our knowledge, limited mathematical models are available describing these

types of dynamics and (i) including the interplay of the multiple elements forming the tumor

microenvironment (TME) in a mechanistic fashion, (ii) using a few sets of ordinary differen-

tial equations, and (iii) estimating precise model parameters in absence of anticancer

treatment.

From a theoretical perspective [20–22], very recent reports suggest that the prey-predator

concept, largely used in ecology, could resemble the interaction between cancer cells and

immune cells [20–22]. And, although the dynamics of immune cells and target cells present

some discrepancies with the classical ecological framework, it inspires a new perspective on

the possible mechanisms involved in tumor progression. Particularly, the work carried out by

Kareva et al. [20] proposes a prey-predator-based model to describe the interplay between a

heterogeneous population of tumor cells (prey) and cytotoxic immune cells (predator), and

compares different types of interactions (i.e. mutualism, competition, prey-predator), with the

multiple mechanisms undertaken in the TME. However, results are based on multiple simula-

tions using literature parameters and do not include experimental observations supporting the

theoretical framework.

The development of model structures capable of characterizing non-monotonic behaviors

of tumor growth is highly relevant, particularly at the preclinical stage, since due to its transla-

tional capacity, a more accurate estimation of the parameters that govern cancer cells prolifera-

tion could necessarily affect the design of dosage schemes or treatment combinations that

guarantee optimal efficacy results.

The objective of the current investigation is to develop a data-driven model characterized

by a structure describing oscillatory tumor growth profiles and untangling the underlying

mechanisms in untreated mice. To fulfil that objective, xenograft-derived unperturbed tumor

growth longitudinal data obtained from a large set of tumor cell lines and several cancer types

were analyzed using the non-linear mixed effect approach. As a corollary, the capability of the

model to incorporate the effect of different treatments is also explored.

Fig 1. Tumor volume over time of a single mouse from a control group which was inoculated with lung H1975 tumor cells. The raw data (observations

represented with points and joined with dashed lines) shows an apparent oscillatory profile in contrast with the predictions obtained from the commonly used

tumor growth dynamics models (solid colored lines).

https://doi.org/10.1371/journal.pcbi.1011507.g001
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Materials and methods

Ethics statement

All the experiments were approved by the Eli Lilly and Company institutional Animal Care

and Use committee.

Experimental data

Data from control (unperturbed) groups of different xenografts preclinical studies were pooled

together, resulting in longitudinal tumor volume (TV) data from 85 mice (individual volume

measurements = 1,064), including 12 different cell lines from 6 tumor types (breast (MB-321),

leukemia (MV411), lung (A549, Calu-6, H1650, H1975, H2122, H441), lymphoma (JEKO-1),

melanoma (A2058, A375) and pancreas (MIA PaCa-2)). Additional details regarding the num-

ber of animals and observation in each cell line can be found in Table A in S1 Text. Moreover,

a comprehensive description of the experimental procedures can be found elsewhere [23].

Briefly, after subcutaneous inoculation of human-derived tumor cells into the flank of athymic

nude mice, tumor size was measured using a caliper. When the tumor exceeded the upper

tumor size limit defined in the ethical protocol, mice were sacrificed. Tumor volume (TV) was

then computed assuming an ovoid form: (length × width2)/2 [24].

Empirical exploratory analysis of tumor volume profiles

Tumor volume observations (Fig 2) were first analyzed empirically to characterize the oscil-

latory behavior and investigate if the patterns were systematically observed across the different

tumor types and cell lines.

For this purpose, raw data were first transformed in two different ways aiming for a fair

comparison between different individuals: (a) logarithmic transformation of TV (log

Fig 2. Tumor volume raw data from multiple experiments including different tumor types (panels) and cell lines (different colors in each panel). Points

and colored lines represent the observed tumor volume observations for each individual.

https://doi.org/10.1371/journal.pcbi.1011507.g002
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transformation) and (b) rescaling of the TV with the maximum observed growth for each ani-

mal (unit normalization transformation). Then, two different approaches were used to fit the

raw data profiles: (i) classical TGD models (i.e. linear, exponential, Gompertz or Simeoni)

using non-linear regression and (ii) the cubic natural spline function using smoothing spline

function ([curve, gof_spline,out_spline] = fit (t, f, ’smoothingspline’)) implemented in

MATLAB version 9.10.0 (R2021a) (The MathWorks Inc.) [25]. The best-performing classical

TGD model for each individual according to the adjusted R2 value was selected. Fig 3 presents

a particular individual as to case-example the analysis in which the computed adjusted R2 for

the exponential, logistic, Gompertz and Simeoni were 0.90, 0.95, 0.96, and 0.95, respectively,

whereas for the cubic spline was 0.98. Fig 3A presents tumor volume observations (dots) of the

case example, together with the spline function fit (dashed lines) and the best-performing clas-

sical TGD model (Gompertz) (solid line).

Subsequently, the difference between the classical TGD model fit and the spline function

(used as reference) was computed and used to study the individual oscillations. For the case

example used in Fig 3, panel B described the difference between both models (blue solid line),

together with the zero-crossings (crossing with the zero-line–red dots), and extrema (maxi-

mums-blue dots and minimums-green dots). Additionally, the figure also reflects the oscil-

latory periods and half-periods. Specifically, the oscillatory half-period (HP) (time needed to

complete half-oscillation) was used as the selection metric

To further address the question of whether the perceived oscillations are artefacts due to

inherent noisy data or true oscillating signals a simulation study was performed. For each

mouse data (unit transformation), we first applied the best-performing classical TGD (either

linear, exponential, Gompertz or Simeoni) fit and then perturbed such fit with a Gaussian

white noise with the same variance as the raw data. Subsequently, we performed 5,000 simula-

tions of each individual and computed the corresponding half periods (HP) in the same way as

Fig 3. (A) Single case example of tumor volume observation (dots) fitted with the spline function (dashed line), and with a classical tumor growth

dynamic model, in this case Gompertz equation (solid line). (B) Using the spline line of the case example as reference (dotted black line), the

difference with the best classical model for each individual (Gompertz equation for this case example) is represented with a solid black line.

Additionally, crossing with the zero-line (red points) and the local extrema (blue triangles) are marked in the graph.

https://doi.org/10.1371/journal.pcbi.1011507.g003
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we did during the exploratory data analysis stage. The distribution of the exploratory and sim-

ulated HP was visually compared using a histogram. Additionally, the percentiles of HP

obtained in the exploratory stage with respect to the simulated data were computed and the

Kolmogorov-Smirnov (KS) test was used to evaluate whether they were uniformly distributed.

A more detailed description can be found in S1 Text.

Non-linear mixed effects modeling of tumor growth dynamics

Population analysis was performed using the nonlinear mixed-effects modeling (NLME) [26]

approach. Specifically, population parameter estimation was performed using the SAEM (sto-

chastic approximation expectation minimization) algorithm coupled with the Markov Chain

Monte Carlo procedure implemented in Monolix 2021R1, Lixoft SAS, a Simulation Plus com-

pany [27].

During model building, data were fitted to the different tumor growth dynamic models:

classical TGD models and tumor growth models integrating biological. Additionally, the full

set of TV vs time profiles was analyzed simultaneously and using the log transformation.

Inter-individual variability (IIV) was modeled exponentially, and residual error was described

using an additive error model on the logarithmic scale.

Unperturbed tumor growth models

a. Classical tumor growth models

The linear, exponential, Gompertz and Simeoni models were fitted to the longitudinal TV data

in the absence of anticancer treatment (Table A in S2 Text). The list of explored models does

not intend to be exhaustive but does represent the most used ones. All of these models resem-

ble just the growing mechanism and share certain common features as the initial condition

(predicted tumor volume after cell inoculation (TV0)), and the capability to estimate the full

set of model parameters in a data-driven modeling exercise. However, what is relevant to the

current investigation, is that the model structures predict a monotonic (smoothly continuous)

increase in tumor growth.

b. Tumor growth models integrating biological mechanisms

The presence of oscillatory behavior in the tumor volume versus time profiles motivated

the use of models representing different aspects of the complex biological system such as

angiogenesis, the role of the immune system, and tumor heterogeneity. The data were also fit-

ted to tumor growth models including biological mechanisms (Table B in S2 Text).

However, since none of the models explored so far provided a fair description of the data a

novel model structure was sought. Our proposed model assumes that cancer cells will both

consume resources (RES) and promote angiogenesis (ANG) in order to increase the amount

of RES delivered to the TME. Additionally, the model accounts for cancer cells and blood ves-

sels’ natural degradation.

Fig 4 describes schematically the final selected model which is mathematically represented

by the following set of differential equations:

dTV
dt
¼ l� TV � RES � kdeath � TV ð1Þ

dANG
dt
¼ kang � TV � kdeath � ANG ð2Þ

PLOS COMPUTATIONAL BIOLOGY Mechanistic modelling of cancer cells and the tumor microenvironment interplay

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011507 October 4, 2023 6 / 18

https://doi.org/10.1371/journal.pcbi.1011507


dRES
dt
¼ kres � ANG � kconsumption � TV ð3Þ

where the growth rate is governed by the second-order rate constant λ; kang and kres are the

first-order rate constants governing the proliferation of angiogenesis and resources, respec-

tively; kdeath is the first-order rate constant representing natural degradation, and kconsumption

first-order rate constant reflects the consumption of resources by cancer cells. Note that tumor

volume was measured in mm3 while ANG and RES are expressed as arbitrary units (au). In

addition, tumor volume at the time of cell inoculation (TV0) is a parameter of the model to be

estimated, however, ANG and RES are initialized at a value of 1.

Once the final model, described by Eqs 1–3, was selected based on the model selection crite-

ria (see below), a mathematical and numerical analysis was undertaken to understand the inte-

grated dynamics of the different entities of the model (tumor, resources, angiogenesis). For

this purpose, the equilibrium points and the dynamic behavior of the system were investigated

(in section C of S2 Text).

Model selection and evaluation

Selection between competing models was performed using the (i) Akaike information crite-

rion (AIC) which applies a penalty proportional to the number of model parameters, (ii) preci-

sion of parameter estimates expressed as the relative standard error (RSE %) calculated as the

ratio (multiplied by 100) between the standard error and the parameter estimate, and (iii)

visual inspection of the goodness-of-fit (GOF) plots including residuals lag plots [28].

Fig 4. Schematic representation of the final model. Solid arrows indicate the proliferation/activation or the death processes, and the dashed arrows

describe the different interactions between the three species. Parameters are defined in the text. Graphical elements are adapted from Servier medical art

repository (https://smart.servier.com).

https://doi.org/10.1371/journal.pcbi.1011507.g004
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In addition, simulation-based diagnostics, and visual predictive checks (VPCs) were gener-

ated to evaluate further the ability of the model to resemble both the typical tendency and dis-

persion of the data. In brief, 1,000 datasets of the same characteristics as the original one was

simulated using the selected model and its parameter estimates. Resembling the experimental

design, tumor size values above the prespecified upper limit [26] were removed from the simu-

lation. Then, for each simulated dataset, the 2.5th, 50th, and 97.5th of the TV were calculated

per time interval, and the 95% prediction intervals of the aforementioned percentiles were

graphically superimposed onto the 2.5th, 50th, and 97.5th percentiles of the raw data.

Finally, the relevance of the different model parameters on the system was evaluated in a

local sensitivity analysis. One parameter at a time was increased or decreased by 50% and sub-

sequently, tumor volume, the amount of resources and the amount of angiogenesis at day 20

were computed for each scenario. The selected time for the sensitivity analysis reflects the time

after cell inoculation at which tumor volume was approximately half of the maximum allowed

by the ethical committees.

Model exploration

Deterministic simulations in which different values of kconsumption, kANG, and kRES were used

to further explore the effect of anticancer treatment on tumor shrinkage. First, the parameters

were increased or decreased by 25% and 75% and the tumor volume, angiogenesis and

resources over time curves (from day 0 to day 100) were obtained for each scenario. In addi-

tion, to simultaneously evaluate the impact of parameters on the model outcome (i.e. area

under the tumor volume versus time curve (AUTC) until day 100), 200 different combinations

using Sobol’s method [29] as approximated by Saltelli and colleagues [30] and implemented in

SAFE toolbox R package [31] were obtained. The most relevant parameters according to the sen-

sitivity analysis (kconsumption, kANG, and kRES) were sampled from the (plausible) parameter space

using the Latin Hypercubic method and assuming a uniform distribution in the log domain.

Results

Empirical exploratory analysis of tumor volume profiles

The oscillations of our experimental data were characterized using the exploratory analysis

showed for a single mouse in Fig 3. Across the different tumor types, similar oscillatory HP

distributions were observed, with a mean between 8 and 11 days (Fig 5A).

Moreover, the simulation study (see S1 Text for a complete description of the different

steps using a single case example) confirms that the observed HP are extreme with respect to

the distribution of the simulated HP. Therefore, suggesting that the oscillations are a landmark

of the underlying mechanisms driving tumor growth and not part of the residual error. Specif-

ically, the results show, both graphically (Fig 5B) and statistically (extremely low p-value of the

KS test) that the estimated proportions of simulated HP above the experimental HP are not

homogenously distributed and thus not random.

Non-linear mixed effects modeling of tumor growth dynamics

Unperturbed Tumor growth models

a. Classical tumor growth models

Out of the models listed in Table 1, the Simeoni model [32] provided the best description of

the data and was associated with the lowest AIC value. The difference in AIC with respect to

the Simeoni model was 1412, 370, and 209 for the linear, exponential and Gompertz models,
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respectively. The final parameter estimates for each model and the AIC values can be found in

Table A in S2 Text. The visual predictive check of S3 Fig demonstrates an adequate perfor-

mance of the Simeoni model. However, when studying the weighted residuals over time

(S3 Fig) an oscillatory pattern up to day 50 can be observed. In addition, S3 Fig further evalu-

ates model performance through the autocorrelation plot. The lag plot indicates a significant

autocorrelation between residuals (p<0.001), suggesting that the tumor dynamics are not fully

described by the model structure.

b. Tumor growth models integrating biological mechanisms

The different models explored in section B in S2 Text describe different entities of the TME

and mechanisms involved in cancer progression. The aforementioned models including the

immune system [33,34], cancer cells heterogeneity [6,35], or angiogenesis (carrying capacity

dynamics) [14,36] were unable to reproduce an oscillatory pattern. Therefore, the complex

behavior of the raw data in unperturbed conditions was not captured (see the typical profile of

each model in Table B in S2 Text).

Fig 5. (A) Boxplots of the half-periods for the different tumor types. (B) Estimated percentiles and p-value of Kolmogorov-Smirnov

(KS) test for zero-crossing (blue) or extrema (red). The dashed blue lines correspond to the expected height of all the bins for the

uniform distribution.

https://doi.org/10.1371/journal.pcbi.1011507.g005
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The novel tumor growth model described by Eqs 1–3 and represented in Fig 4, provided an

adequate precision for parameter estimates (RSE<30%) and a proper description of the TV

profiles (Fig 6A). With regard to random effects, our data supported the inclusion of inter-

individual variability in all the parameters except kres whose IIV was associated with model

instabilities. Moreover, although no treatment is administered, the model supported the

Table 1. Final model parameters of the tumor growth model.

TG Model Prey-predator

AIC

122.97

Parameters

Estimate (RSE%) IIV (RSE%)

TV0 (mm3) 69.06 [4] 0.29 [10]

λ (au-1×day-1) 0.046 [6] 0.44 [8]

kang (au× mm-3× day-1) 0.00036 [5] 0.31 [11]

kres (day-1) 0.11 [4]

kconsumption (au× mm-3 ×day-1) 0.00069 [5] 0.35 [10]

kdeath (day-1) 0.0081 [7] 0.27 [23]

Residual error (log(mm3)) 0.17 [3]

AIC: Akaike information criteria; IIV: inter-animal variability expressed as coefficient of variation ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eo2
� 1

p
Þ; RSE:

relative standard error in percentage (%)

Fig 6. Models results and a graphical evaluation of the final tumor growth model: (A) visual predictive check: the black dots show the tumor volume measure,

black lines represent the 5th, 50th and 95th percentiles of the raw data, colored areas denote the 95th confidence interval of model-predicted median (orange

areas), 5th and 95th percentiles (blue areas). (B) Weighted residuals versus time (right panel) and lag plot (where i represents each residual value in

chronological order of observations) (left panel). (C) Tumor volume vs time observations (solid circles) and individual model predictions corresponding to the

individual model parameters obtained from the selected (orange) and Simeoni (blue) models, for six different mice chosen at random.

https://doi.org/10.1371/journal.pcbi.1011507.g006
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inclusion of tumor cell death (naturally occurring) and blood vessel degradation, both pro-

cesses governed by a kdeath. The final model parameters can be found in Table 1.

The results of the novel structure were significantly an improvement over the previously devel-

oped models. This was testified by the GOF plots (Fig 6B); both the weighted residuals versus

time and the lag of autocorrelation observed in the lag plots (p>0.05), not forgetting the good

quality of the individual predictions (Fig 6C). Additionally, a lower AIC and a decreased error

were obtained compared to the Simeoni model (ΔAIC = -56.24 and Δresidual error = -0.02).

The mathematical and numerical analysis (see section C in S2 Text) revealed that the sys-

tem, given the final parameter values (Table 1), has only one equilibrium point (the trivial one)

with no eigenvalues associated. Nevertheless, the numerical integration shows that the system

exhibits an oscillatory behavior. Fig 7 depicts the numerical solutions for the final model

parameter estimates and 50 other simulated solutions resulting from slightly perturbed initial

conditions. Additionally, the behavior observed in Fig 7 highlights two important aspects

regarding the dynamics: (i) that the solution is oscillatory with non-constant frequency and

(ii) that the initial condition perturbations lead to very similar solutions, showcasing the

robustness of the population solution.

Following the exploration of the model, the sensitivity analysis (Fig 8A) reflects that TV is

more sensitive to the parameters governing the proliferation (kres) and consumption (kconsump-

tion) of RES. And, in a smaller extent, to the proliferation rate constant of angiogenesis (kang).

TV at baseline (TV0) and λ are the parameters that least influence the final TV observed. Addi-

tionally, the deterministic simulation (Fig 8B) performed after varying the aforementioned

parameters show that higher values of kres and kang or lower values of kconsumption resulted in a

higher oscillatory frequency of RES, and thus in an increased TV. Moreover, although tumor

shrinkage is only achieved by decreasing kres 75% (red-Fig 8B), the results suggest that a slower

tumor growth will be observed with different scenarios. Including among others, anti-angio-

genesis treatments (decreasing kang), resources proliferation inhibition (decreasing kres), can-

cer cells killing or blood vessels degradation (higher values of kdeath), and elimination of TME

resources (increasing kconsumption). Due to this, in order to observe a reduction in TV, different

anti-cancer treatments might need to be combined. In fact, currently, successful anticancer

therapies are based on different combination approaches [37].

Fig 7. Numerical solution of the mean population parameters (red thick curve), together with 50 solutions (gray

lines) obtained by perturbing the initial conditions by a Gaussian white noise vector (the variance for resources,

angiogenesis and tumor volume being 0.1, 0.1 and 1, respectively). The plot reflects the dynamics of the resources

(au) (RES), angiogenesis (au) (ANG), and tumor volume (mm3) (TV).

https://doi.org/10.1371/journal.pcbi.1011507.g007
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Fig 9 provides an overview of a wide range of parameter combinations which can poten-

tially result from different treatment combinations. The difference in the AUTC of each simu-

lated scenario with respect to the typical individual (without treatment–individual colored in

red in Fig 9), was used as the selection metric. The combination of different antiangiogenic

drugs affecting both kang and kres, (Fig 9 -treatment A and B) results in a decreased tumor

Fig 8. Sensitivity analyses. (A). Sensitivity analysis of the model when one parameter at a time is modified

representing the percentage of change in tumor volume at 20 days after tumor inoculation. B. Deterministic model

simulations of the tumor size, angiogenesis and resources over time for different values of kang, kres and kconsumption.

https://doi.org/10.1371/journal.pcbi.1011507.g008
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growth rate, resembling the tumor volume profiles of stable disease or partial responder

patients. On the contrary, the cytotoxic effects of chemotherapy result in an initial decay not

observed in the previous scenario. Moreover, when either chemotherapy or immunotherapy

(promoting cancer cell death or blood vessel degradation) (kdeath) is combined with an anti-

cancer treatment able to inhibit tumor resources, the highest tumor volume reduction (Treat-

ment C of Fig 9 presents the lowest AUCT). In summary, the model reflects the high

variability in the response observed in preclinical and clinical scenarios and suggests that com-

bination strategies are needed to succeed in cancer treatment.

Discussion

The main contribution of this work is the development of a simple but mechanistic based

tumor growth model that retrieves precise model parameter estimates using only tumor longi-

tudinal observations gathered from standard experimental settings in unperturbed mice. Fur-

thermore, although the Gompertz expression has demonstrated a high predictive power

[11,13] and adequately fits both preclinical [12,38] and clinical data [39], the proposed model

showed increased adequacy in all the numerical and graphical diagnostics performed. In this

respect, the lag plots, scarcely used as a goodness of fit plot to compare among competitor

models, emerge as a powerful diagnostics tool to support the selected model.

The development of this novel tumor growth model was motivated by the oscillatory pat-

terns observed in unperturbed (i.e., in the absence of anti-cancer treatment) tumor growth

profiles obtained in a variety of xenograft studies. The new model proposal describing non-

monotonic growth assumes: (i) angiogenesis induced by cancer cells, (ii) the increase of tumor

growing resources (i.e. nutrients and oxygen) as a result of angiogenesis, (iii) tumor growth

dependent on the available resources, and (iv) consumption of resources by cancer cells.

Fig 9. Impact of virtual combination therapies. Points represent the change in the area under the tumor size vs time curve (AUTC) for each combination of

the kres, kang, and kconsumption parameters with respect to the one corresponding to the typical parameter estimates (Table 1). The circle in red corresponds to

the reference AUTC value. AUTC was calculated from time 0 to 100 days. Additionally, a tumor volume profile over time for four different parameter

combinations is shown on the right side of the figure.

https://doi.org/10.1371/journal.pcbi.1011507.g009
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Remarkably, the possibility that those patterns were the consequence of random variations

was discarded based on the results of a statistical analysis performed comparing the distribu-

tion of random HP oscillation and the observed HP (KS test with a p-value lower than 10−9).

In addition, the statistical analysis also revealed that the characteristics of the oscillations were

evenly distributed across the different cell lines. No pattern suggesting that a particular tumor

type was more prone to show non-constant growth rates was observed. It is also important to

note that, although a formal analysis was not performed, intuitively, we can conclude that in

those cases where there is a sparse sampling, the detection of the oscillatory behavior might be

jeopardized. Therefore, highlighting the relevance of the study design and the sampling sched-

ule to identify the optimal times for tumor volume measurements that will inform as maxi-

mum as possible the different model parameters within a given model structure [23,40].

Even though different authors have pointed out that even in the absence of treatment,

tumor growth rate can vary over time as a consequence of the TME [20,41,42], limited mathe-

matical models have been developed characterizing this complex dynamic. There are a few

models describing oscillatory tumor growth profiles in untreated groups through complex

mathematical frameworks or from a more theoretical approach [41–44]. However, interest-

ingly, the vast majority of models that are being currently used to describe the aforementioned

profiles using the non-linear mixed effects approach treat the deviations around the mono-

tonic growth as noise (residual error). The oscillatory patterns are then described as a result of

treatment administration, and once the treatment is rescinded, tumor growth returns to follow

a monotonic increase.

Thus, even though our work is not the first attempt of studying this complex pattern, to the

best of our knowledge, it is the first data-driven modelling exercise that describes non-mono-

tonic tumor growth profiles in the absence of treatment through a simple system of ordinary

differential equations, easily implemented in any modelling platform. Nevertheless, note that

one of the limitations of this structure is that only tumor volume measures were available and

therefore, no experimental data were available to confirm the mechanisms behind the oscil-

latory patterns. On the one hand, systemic biomarkers reflecting the multiple mechanisms tak-

ing place in the tumor microenvironment are hardly available as longitudinal observations.

And on the other hand, complex designed experiments including the administration in mono-

therapy and in combination with multiple anti-cancer drug acting on different mechanisms

will be needed in order for the tumor volume data to reflect tumor growth mechanisms.

In our model, the initial tumor volume (TV0) and the tumor growth rate constant (λ), esti-

mated to 69.06 mm3 and 0.046 day-1, respectively, were within the range obtained with refer-

ence models. This highlights the fact that although the classical TG models are not able to

capture the oscillatory behavior, they are generally capable of describing the mean trend of the

data. In addition, the previous publication [23] in which the same experimental data was ana-

lyzed using the Simeoni model suggested that certain model parameters were different across

cell lines. However, in the current work, although we investigated the different HP for each

tumor type, we did not consider these differences during model development. The present

analysis should be extended in order to further study the non-monotonic pattern in each

tumor type or cell line.

With the proposed model, which includes key biological mechanisms involved in tumor

progression, emerges the possibility of locating drug effects more mechanistically on different

parameter targets. Figs 8 and 9 of the main text suggest that both treatments which decrease

kres and kang or increase kconsumption and kdeath, present slower tumor growth profiles or even

show tumor shrinkage. Therefore, the importance of this approach lies in its potential transla-

tional impact on drug combinations from different angles. Even in more mechanistic models,

the drug effect is only included in tumor death [7].
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Furthermore, the aspect of optimizing the dosing schedules in combination therapies

remains elusive. Increasing the mechanistic understanding of the system gives the opportunity

to explore whether different dosing schemes can increase the benefit and lower toxicity. One

example of hematological toxicity in chemotherapy is the model built for diflomotecan [45]

which includes the coexistence of different states of cancer cells (proliferative and quiescent).

In summary, the work presents a new semi-mechanistic model able to describe the non-

monotonic growth and the interaction between the tumor, angiogenesis and resources in the

TME. This framework constitutes a valuable tool to explore different mechanisms of action in

a more mechanistic fashion and thus supporting the rational design and selection of drug can-

didates in different scenarios.
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